INF 3800: String Extravaganza



“How do you represent big
dictionaries in memory?”



Binary Search

Example
1 J A ettt AL [ 18 211 L
2 /** Binary search of sorted array. Negative value on search failure.
3 * The upperbound index is not included in the search.
4 * This is to be consistent with the way Java in general expresses ranges.
5 * The performance is 0(Clog N).
6 * @param sorted Array of sorted values to be searched.
7 * @param first Index of first element to serach, sorted[first].
8 * @param upto Index of last element to search, sorted{upto-1].
9 * @param key Value that is being looked for.
10 * @return Returns index of the first match, or or -insertion_position
11 * -1 if key is not in the array. This value can easily be
12 W transformed into the position to insert it.
13 ¥ f
14 public static int binarySearch(int[] sorted, int first, int upto, int key) {
15
16 while (first < upto) {
17 int mid = (first + upto) / 2; // Compute mid point.
18 if (key < sorted(mid]) {
19 upto = mid; // repeat search in bottom half.
20 } else if (key > sorted[mid]) {
21 first = mid + 1; // Repeat search in top half.
22 } else {
23 return mid; // Found it. return position
24 }
25 }
26 return -(first + 1); // Failed to find key
27 }




Binary Search, cont.
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public static int binarySearch(String[] sorted, String key) {

int first = 0;
int upto = sorted.length;

while (first < upto) {
int mid = (first + upto) / 2; // Compute mid point.
if (key.compareTo(sorted{mid]) < 0) {
upto = mid; // repeat search in bottom half.
} else if (key.compareTo(sorted{mid]) > 0) {
first = mid + 1; // Repeat search in top half.

} else {
return mid; // Found it. return position
}
}
return -(first + 1); // Failed to find key




Binary Search, cont.

* Membership checking in O(log,(n))
— Are the O(1) methods you know of, e.g., hashing techniques, always better?

 What about prefix searches?
— E.g., “comp™*” for {“computation”, “computer”, ...}.
— Note how many data structures are “prefix friendly”
* E.g., sorted arrays, trees, tries, state machines.

* Prefix lookups can help solve harder lookup problems

— Many thornier searches can be cleverly reduced to one or more prefix
searches, possibly with some post-processing added.



Suffix Arrays
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Abstract

A new and conceptually simple data structure, called @ suffix array, for on-line string searches is intro

duced in this paper. C ructing and guerying suffix arrays is reduced to a sort and search paradigm that

employs novel algorithms. The main advantage of suffix arrays over suffix trees is that, in practice, they

use three to five times less sa!
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A prefix of a suffix is an infix
— Phrase/substring searches!

Create and sort an array that organizes all
suffixes
— But do it compactly

Search using binary search

— Possibly speed things up by considering least
common prefixes



Suffix Arrays, cont.

Consider the string

1234567891011 12

abraclaldab r a $

of length 12, that ends with a sentinel letter $, appearing only once, and less (in lexicographical order) than any other letter in
the string.

It has twelve suffixes: "abracadabra$", "bracadabra$", "racadabra$", and so on down to "a$" and "$" that can be sorted into

lexicographical order to obtain:

index sorted suffix Icp

12 $ 0
1 a$ 0
8 abra$ 1
1 abracadabra$ 4
4 acadabra$ |1
6 adabra$ 1
9 bra$ 0
2 bracadabra$ |3
5 cadabra$ 0
7 dabra$ 0
10 ra$ 0
3 racadabra$ |2

If the original string is available, each suffix can be completely specified by the index of its first character. The suffix array is
the array of the indices of suffixes sorted in lexicographical order. For the string "abracadabra$", using one-based indexing, the
suffix array is {12,11,8,1,4,6,9,2,5,7,10,3}, because the suffix "$" begins at position 12, "a$" begins at position 11, "abra$"
begins at position 8, and so forth.

The longest common prefix is also shown above as Icp. This value, stored alongside the list of prefix indices, indicates how
many characters a particular suffix has in common with the suffix directly above it, starting at the beginning of both suffixes.
The Icp is useful in making some string operations more efficient. For example, it can be used to avoid comparing characters
that are already known to be the same when searching through the list of suffixes. The fact that the minimum Icp value
belonging to a consecutive set of sorted suffixes gives the longest common prefix among all of those suffixes can also be
useful.




Suffix Arrays, cont.

Offsets
—

£ N % lord greystoke qé: flies ok

= | 1 lord of the flies : ;gredys © et .

S - 2 ord greystoke

= 2 lord of the rings 2 .

A & g lord of the flies
lord of the rings
of the flies } )
of the rings

The application dictates what we rings .
consider to be a searchable suffix the flies oty w)=a
the rings w

Lots of repetitions in the suffixes,
represent them compactly!

Exploiting Icp(v, w) is useful if the substrings we search for are long

Links to the Burrows-Wheeler transform



Tries

In computer science, a trie, or prefix tree, is an ordered tree
data structure that is used to store an associative array
where the keys are usually strings. Unlike a binary search
tree, no node in the tree stores the key associated with that
node; instead, its position in the tree shows what key it is
associated with. All the descendants of a node have a
common prefix of the string associated with that node, and
the root is associated with the empty string. Values are
normally not associated with every node, only with leaves
and some inner nodes that correspond to keys of interest.

The term trie comes from retrieval. Following the etymology,
the inventor, Edward Fredkin, pronounces it /triz/ "tree",[112]
However, it is pronounced /trar/ "try" by other authors.[/[2I[E]

In the example shown, keys are listed in the nodes and
values below them. Each complete English word has an

/\

./Iw. i

A trie for keys "A”, "to”, "tea”, "ted”, "ten”, ", &
"in", and "inn".

arbitrary integer value associated with it. A trie can be seen as a deterministic finite automaton, although the
symbol on each edge is often implicit in the order of the branches.

It is not necessary for keys to be explicitly stored in nodes. (In the figure, words are shown only to illustrate

how the trie works.)

Though it is most common, tries need not be keyed by character strings. The same algorithms can easily be
adapted to serve similar functions of ordered lists of any construct, e.g., permutations on a list of digits or
shapes. In particular, a bitwise trie is keyed on the individual bits making up a short, fixed size of bits such

as an integer number or pointer to memory.




Tries, cont.

Programming Glean Manacher
Technigues Edsor

1. Intreduction

Ia many information retricval and text-editing appli-
cations it s mecessary 1o be able to locate quickly some or
all occurrences of user-specified patterns of words and
phrases in text. This paper describes a simple, efficient
10 locate all occurrences of any of a finite

Efficient

String Matching:
An Aid to
Bibliographic Search

Alfred V. Aho and Margaret J. Corasick
Bell Laboratories

number of keywords and phrases in an arbitrary text
stnng.

The approach shoukd be familiar 10 those acquainted
with finite automata. The algorithm consists of two parts.
In the first part we construct from the set of keywoeds a
finite state pattern matching machine; in the second part
we apply the text string as input 1o the pattern matching
machine. The machine signals whenever it has found a
maich for a keyword

Using finite state machines in pattern matching applhi-
cations is not new (4, & 17], but their use seems to be
[{ shunned by s, Part of the remson
for thes relectance on the part of programmers may be
due 10 the of the |

This paper describes & slmple, effichent ™

for constructing finite automata from regular

locate all occurrences of any of a Snite number of key-
words In a string of text. The algerithm comsists of con-
structing & finite state pattern matching machine from the
keywords and then using the patiern matching machine
1o process the text string in » single pass.

¢ 3, 10, 15), W state

technigues are needed (2, 141 This paper shows that an
efficient finite state pattern matching machine can be
constructed quickly and simply from a restricted class of
regular cxpe . mamely those of finite sets

of the pattern matching machine takes time proportionsl
1o the sum of the lengths of the keywords. The number
of state transitions made by the pattern matching
machine in processing the text string Is Independent of
the number of keywords. The algorithm has been wied to
improve the speed of a library bibliegraphic search pro-
gram by a factor of S 1o 10,
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of key Our the ideas in the
Knuth-Morrss-Pratt algonthm [13] with these of finite
state mac hincs.

Perhaps the most interesting aspect of this paper is
the amownt of improvement the finite state algonthm
Pves over more conventonal approaches We used the
finse state pattern matching algorithm in a library biblio-
graphic scarch program. The purpose of the program is
10 allow 3 bibliographer 10 find in a citation index all titles
satsfying some Boolean function of keywords and
phrases. The search program was first implemented with
a string h;
this algorithm with the finite state approach resulted in a
program whose running time was a fifth 10 a tenth of the
onpnal program on lypical inputs.

2. A Pattern Matching Machine

This section describes a finite state siring pattern
maiching machine that locates keywords in a text string.
The mext section the algo to
such a machine from a given finite set of keywords.

In this paper a strimg s simply a finite sequence of
symbols. Let K = [y, »y. . %! be a finite set of
strings which we shall call keywords and let x be an arbi-
trary string which we shall call the next swring. Our prob-
fem s 10 locate and identify all substrings of x which are
keywords in K. Substrings may overlap with one another.

A paticrn matching machine for K is a program which
takes as input the text string x and produces as output
the locations in x at which keywords of K appear as sub-
sirings. The pattern maiching machine consists of a set
of states. Each state is represented by a number. The
machine processes the text string x by successively read-
ing the symbols in x, making state transitions and occa-

Communacaons June 1975
of Volume 18
e ACM Number 6

Do a trie-walk to find all dictionary
occurrences contained in given text fragment

— Scales linearly with the length of the text
fragment

— The size of the dictionary “doesn’t matter”!

The application dictates constraints on where
matches can begin and end

— Should usually coincide with token boundaries
in an NLP setting



Tightly Packed Tries
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Abstract

We present Tightly Packed Tries (TPTs),
compact implementation of resd-only, com
pressed trie structures with fast on-demand
paging and short load Lmes.

We demonsirate the benelits of TPTs for stor.

rgram back-off langusge models and
ne transla:
bases re-
represents
the same dats compressed with the
. Al the same lime, they can be
mapped into me ckly and be searched
dis i car in the length of the key
without the need to decompress the eatire [
The overhead for local decompression during
search is marginal.

es for statistical m
coded as TPTs, these
s space than flat text

1 Introduction

The amount of data available for data-driven Nat-
ural Language Processing (NLP) coatinues to grow.
For some languages, language models (LM) are now
being trained on many billions of words, and par-
allel corpora available for building statistical ma-
chine translation (SMT) systems can run into tens
of millions of sentence pairs. This wealth of data

organize these models so that we can swap informa-
tion in and out of memory as needed, and as quickly
as possible?

This paper presents Tightly Packed Tries (TPTs),
& compact and fast-loading implementation of read-
only trie structures for NLP databases that store
information associated with token sequences, such
as language models, n-gram count datzbases, and
phrase tables for SMT.

In the following section, we first recapitulate
some basic data structures and enceding techniques
that are the foundations of TPTs. We then lay out
the organization of TPTs. Section 3 discusses com-
pression of node values (i.e., the information asso-
ciated with cach key). Related work is discussed in
Section 4. In Section 5, we report empirical results
from run-time tests of TPTs in comparison to other

! ions. Section 6 concludes the paper.

2 Fundamental data structures and
encoding techniques

2.1 Tries

Tries (Fredkin, 1960), also known as prefix rrees, are
a well-established data structure for compactly stor-
ing sets of strings that have common prefixes. Each

allows the construction of bigger, more h
sive models, often without changes to the fundamen-
1al model design, for example by simply increasing
the n-gram size in language modeling or the phrase
length in phrase tables for SMT.

The large sizes of the resulting models pose anen-
gineering challenge. They are often too large to fit
entirely in main memory. What is the best way to

are Engineerd
oewdo, June 2008,

string is s d by a single node in a tree struc-
ture with labeled arcs so that the sequence of arc la-
bels from the root node to the respective node “spells
out” the token sequence in question. [f we augment
the trie nodes with additional information, tries can
be used as indexing structures for databases that rely
on token sequences as search keys. For the remain-
der of this paper, we will refer to such additional

Coemrastionsl Linguistics

Assurance for Nanural Language Processing, pages 31-39,

Lay stuff out in a single contiguous byte array
— Facilitates a compact representation
— Enables memory mapping

Populate the array by traversing the trie in
post-order
— Logically, at least

Can be further combined with compression
techniques

— E.g., various variable length encodings



Tightly Packed Tries, cont.

total count | 20

a| 13
aa | 10
ab | 3

b|7

(a) Count table (b) Trie representation

field 32-bit  64-bit
index entry: token ID 4 4
index entry: pointer 4 8
start of index (pointer) 4 8
overhead of index structure

node value } ’ y

total (inbytes) 124+xz 20+y

(c) Memory footprint per node in an implemen-
tation using memory pointers

o | 13 | offset of root node
1 | 10 | node value of ‘aa’
2 | O | size of index to child nodes of ‘aa’ in bytes
3 | 3 | node value of ‘ab’
4 | O | size of index to child nodes of ‘ab’ in bytes
5 | 13 | node value of ‘a’
6 | 4 | size of index to child nodes of ‘a’ in bytes
7 | a | index key for ‘aa’ coming from ‘a’
8 | 4 | relative offset of node ‘aa’ (5 —4 = 1)
g | b | index key for ‘ab’ coming from ‘a’
10 | 2 | relative offset of node ‘ab’ (5 — 2 = 3)
11 | 7 | node value of ‘b’
12 | O | size of index to child nodes of ‘b’ in bytes
13 | 20 | root node value
14 | 4 | size of index to child nodes of root in bytes
15 | a | index key for ‘a’ coming from root
16 | 8 | relative offset of node ‘a’ (13 — 8 = 5)
17 | b | index key for ‘b’ coming from root
18 | 2 | relative offset of node ‘b’ (13 — 2 = 11)

(d) Trie representation in a contiguous byte array.
In practice, each field may vary in length.

Figure 1: A count table (a) stored in a trie structure (b) and the trie’s sequential representation in a file (d). As the
size of the count table increases, the trie-based storage becomes more efficient, provided that the keys have common
prefixes. (c) shows the memory footprint per trie node when the trie is implemented as a mutable structure using direct

memory pointers.




Sharing Prefixes and Suffixes

How to squeeze a lexicon
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From tries toward more general automata
— Natural language compresses very well!

Keep track of equivalent states during
construction
Assuming static dictionaries

Can be very compactly represented

— Previously mentioned packing techniques
apply



Sharing Prefixes and Suffixes, cont.

01 50[0] - '9’; i < 0; larval_state[0] « 0;
q 02 while not eof do
o d ‘ . 33 rez?d]next :Tm'ng into s1[0 .. ¢ — 1], and set ¢ to its length;
. 4 si1lql « sp 05
1 . . S . q . 05 while so[p] = s1[p] do p < p + 1; end while; {p S[]q}
06 while i > p do new_state < make_state(larval_state(i]);
; . ) q . 07 i < i — 1; larval_state[i] < larval_state[i] U {(so]i], new_state) };
. 08 end while; {i <p <gq}
> n g 1 09 while i < g do so[i] « s1il;
. e ' ! . . . . 10 i i+ 1;larval_state[i] « 0;
11 end while; {i=¢+1}
d _y() f O 12 end while;
n . e ‘ 13 while i > 0 do new_state <+ make_state(larval_state[i]);
d | S | 14 i « i — 1; larval_state[i] < larval_state[i] U {(s¢[i], new_state) };
. . . 15 end while;
q . 16  start_state < make_state(larval_state|0]);
Y 0O
n g 1
. I . . . . Figure 4: The algorithm for creating a simple recognizer.
"o
t
e d 1
i L O—0 " O—0O
O—O q 1
» O 0O—0
O . n g 1
i *O—0O—0O—0
Figure 1: A full trie for a contrived set of strings.

Figure 3: Transition diagram of a simple recognizer.




“How do you determine if two
strings are syntactically close?”

“And how do you compute edit
distance efficiently against a large
dictionary?”



Edit Distance

* Given two strings s and t, the minimum
number of operations to convert one to the
other

* Operations are typically character-level

— Insert, Delete, Replace
— Transpose

* Generally found by dynamic programming



Edit Distance, cont.

(
0 1=7=0
o0 1<0or 3<0
( D(FP;,W;_1)+1 \
D=4
D(Py, W) +1
min else
D(P,1,W,_1) + ng
l K D(P_y,W;_3) + R;; )
where p; = w; = ¢ when 1, ) <0 (the null character), and
0 pi=w; I pioi=w; Api=w;,
Sij , My = {
1 else oo else

\

\




Edit Tables

LlInyflloffr|m|lallty|i]o]n
DT 2345|6782 ](10]711
1(0|(1(2]3|4|5]|6|7(8]|9]10
2110 1)12|[3([4(5(6[7|8(9
321012345678
AN3||2|1|(1(1(2(3|4]|5|6]7
S(4|3(2(2]2|1]2|3(4(5]6
G| S||4(3]3|3|[2|[1((2(3|4]5
7165|444 4|3|[2(1(2]3|4
B 7(6[S|5|5|4|3(21]2(3
9(8(7(6|6|6|5|4(3[22|(3
10(9|(8(|7(6|7|6]|5|4(3[2]3
11|10((9 (|8 || 7| 7|7 |6|[S|4]3]| 2

Start at (1, 1), answer at (|s|, |t])

— Usually, but not necessarily,
computed column by column

We might get away with
computing only part of a column
— Ukkonen’s cutoff

Costs don’t have to be integers

— But with unit edit costs the table has
some special properties

— Costs can take statistics, keyboard
layout etc into account



Edit Distance and Dictionaries

Tries for Approximate String Matching

H. Shang and T.H. Merrett®

September 8 1995

Abstract

1 trie-based method whose cost s lependent of de [l

1. Shang and T.H Merrett are at the School omputer Scien McGill University

* Givens, find the closest t in a large dictionary
— Organize the dictionary entries in a trie
— Possibly also partition the entries by length
— Assumes small edit distance, e.g., k={1, 2, 3}

* The trie defines a search space
— We want to prune the search space early

— Each step in the search involves computing a
column in an edit table

— All strings below a node share the same prefix,
and hence also the same columns in the edit
table

— We can prune away a branch when the edit
distance exceeds a given threshold



Edit Tables and Bit-Parallelism

* Represent the edit table as a set of horizontal
Bit-Parallel Approximate String Matching and Ve rtical bit VeCtO rs

Algorithms with Transposition

— Assuming unit edit costs

* Edit table computations become fancy bit
masking and shifting operations

— Allows a constant speed-up proportional to
the machine’s word size

1 Introduction




Edit Distance, cont.

 Together with n-gram  Together with phonetic

matching hashing
1. Find the m best n-gram 1. Preprocess the dictionary to
matches hold (h(t), {(t, v)}) instead of
2. Rerank matches using edit (t, v)
distance, possibly 2. Look up h(s) using a very
considering word low edit threshold (possibly
permutations 0)

3. Rerank matches using edit
distance between s and t

3-gram matching:
“nowember” yields {“november”, “december”}

Example choices of h:
Edit distance: Soundex, Double Metaphone
Makes us select “november”

Double Metaphone:
{“carlisle”, “karlysle”, ...} yields “krll”




Spellchecking and Context

* Spellchecking word by word only gets us so far
— “untied airlines”

/(]

— “blackmonitor”, “micro soft”

 Some candidates are more likely than others

— Score candidates using real-world frequency
information

* When shouldn’t we spellcheck queries?



