SOLUTION SKETCH, INF3800/INF4800 V13

QUESTION 1: NAIVE BAYES

a)

b)

<)

See Equations 13.2 and 13.3 (p. 239.) Conditional independence
assumption (p. 246), positional independence for the multinomial model
(p- 247).

See Sections 13.2-13.4. Table 13.3 (p. 248) summarizes. Multinomial
model typically used in practice.

This is really Table 13.1 (p. 241) in disguise. There are 3 documents in
c=canada. In these 3 documents there are 8 tokens in total, whereof 5 are
bieber. All 3 c=canada documents contain bieber. See also Examples 13.1
(p-241) and 13.2 (p. 244).

1. Multinomial: P = (5+1)/(8+6)=6/14=3/7 = 0.43.

2. Bernoulli: P = (3+1)/(3+2) =4/5 = 0.80.

QUESTION 2: QUERY EVALUATION

a)

b)

<)

See Section 2.3 (p. 33.) Only effective for conjunctive queries, not
disjunctive queries. Even for conjunctive queries, skip lists could slow
down search in some settings (p. 44.)

See Section 7.1.5 (p. 129.) Having impact-ordered posting lists implies
using TAAT evaluation, because the ordering isn’t global.

See Section 7.1.4 (p. 127.) Allows premature termination of the posting
list scanning, for better performance in ranked retrieval. Static quality
scores could represent, e.g., PageRank score (Section 21.2.2), or a
measure derived from user reviews (p. 127), or a popularity/buzz score
derived from an analytics service.

QUESTION 3: XML SEARCH

a)
b)

See Section 10.2 (p. 184.)

See Section 10.2 and lecture slides. E.g., choice of indexing unit (and its
impact on document statistics), nested elements, schemas (both lack
thereof and schema heterogeneity), queries that involve structure and
content (and Ul challenges for users), evaluation metrics.

QUESTION 4: EVALUATION METRICS

a)

F1=1/(0.5(1/R+1/P)) = 2PR/(P + R). See Section 8.3 (p. 144.)

b) See Section 8.4 (p. 148.) With P =R, this is where F; =P =R.

<)

P=8/(8+10) = 8/18 = 0.44. R = 8/20 = 2/5 = 0.40.

QUESTION 5: SUFFIX ARRAYS

a)

Let bieber be entry 0 and belieber be entry 1. See table below. Then sort
the table rows lexicographically by the second column. The suffix array is
the first column in the sorted table. Here (x, y) means position index y of
entry x.

(0,0) bieber
(0,1) ieber
(0,4) er

(0,5) r

(1,0) belieber
(1, 1) elieber
(1,6) er

(1,7) r

b) See paper. Vanilla explanation of binary search and prefix searching is
fine. LCP fanciness to be considered a bonus, not required to explain.

QUESTION 6: PERMUTERM INDEXES
a) See Section 3.2.1 (p. 49.). Would expand bieber to all rotations bieber$,

ieber$b, eber$bi, etc.
b) Convert bi*er to the prefix search er$bi*.

