SOLUTION SKETCH, INF3800 V12
QUESTION 1: INVERTED INDEX

a) By document ID, by static quality [Section 7.1.4], by impact [Section 7.1.5].
The latter precludes concurrent traversal of the posting lists (thus making
document-at-a-time scoring a non-option), but necessitates query-term-
at-a-time scoring.

b) See [Figure 6.2] versus [Figure 6.3]. Impacts size of dictionary versus
complexity of posting lists. Weighted zone scoring.

c) See [Figure 4.6].

QUESTION 2: HEAPS OF FUN

a) See [Section 5.1.1].

b) See [Section 5.1.2].

c) See [Section 5.3.2]. Usually only when space is at an extreme premium,
otherwise VB is usually preferred since it compresses “well enough” and
is a lot more efficient to decode.

d) See [Figure 3.5]. Could be extended to also take into account mfi-2, j-2] in
the min expression.

QUESTION 3: LEARNING TO RANK

a) See [Section 15.4.1]. Could, e.g., sort by distance to plane.

b) See [Section 15.4.2]. Feature vector of differences, pairs of documents
form training instances.

c) See [Section 8.4]. A description of what it does (i.e., explain N, D, C and G)
should suffice, I don’t expect students to get the exact formula right.
Fooled by duplicates.

QUESTION 4: NAIVE BAYES

a) See [Section 13.2]. Bag-of-words, independence. Wrong probability
estimation doesn’t necessarily imply bad classification (calibration versus
discrimination).

b) See [Section 13.2]. To deal with sparseness, eliminate zeros.

c) See [Example 13.1].

d) See [Example 13.1].

QUESTION 5: APPLICATIONS

a) Let's define an index called purchases. The purchases index would have
one document per customer, listing the items that the customer has
purchased. E.g., the purchases index might contain data like this:

documentl = {"userld":"12345", "itemlds":["4","19", "189"]}
document2 = {"userld":"67890", "itemlds":["12", "34"]}



L.e., user 12345 has purchased items 4, 19 and 189, and so on. The users
and items are here for simplicity and without loss of generality
represented using integers, but any value that can be used as a lookup key
for further data is OK. (For example, we here assume that an item
identifier of 19 is a sufficient lookup to know that item's name, price,
description etc in some other system, or possibly in some other index in
the same search engine.) There is one document per user, i.e., there are no
two documents that share the same value for the userld field. The
purchases index is configured so that all fields are searchable and we can
compute a facet over the itemlds field. Thus we can do searches like
"retrieve documents that have userld=234" and "retrieve documents that
have 19 as a member of itemlds", and for each such query we in the result
set can produce a histogram of the distribution of values from itemIds.
E.g., for a query like "retrieve documents that have 19 as a member of
itemlds" we would be able to get back a facet (let's call it
copurchasedltems in the following) having a value like, e.g., {"19":5675,
"797":2892,"69": 1347, "3465":1201, ...}. We simply ignore the first
element of copurchasedltems to read out the answer: Hence, if item 19 is
the reference item for which recommendations should be triggered, we'd
recommend items 797, 69, 3465, etc (in that order).

b) Extend above with catld or similar, and use that.



