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NP-completeness (review)
have no
feasible
solutions

problems
solvable

have
feasible
solutions

;

complete
NP-

NP

P

L ∈ NPC ⇔
L ∈ NPand

L ∈ NP-hard

Today: ProvingNP-completeness
• L ∈ NP : show that there is a “short”†

certificate of membership in L (“id card”).

• L ∈ NP-hard: show that there is an
“efficient”† reduction from a known
NP-hard problem Lnp to L.

† polynomial (length, time . . . )
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Skills to learn
• Transforming problems into each other.

Insight to gain
• Seeing unity in the midst of diversity: A

variety of graph-theoretical, numerical, set
& other problems are just variants of one
another.

But before we can use reductions we need the
first NP-hard problem.

L1
L0

nL

L2

NP

SATISFIABILITY (SAT)
Example
I = C ∪ U

C =
{
(x1 ∨ ¬x2), (¬x1 ∨ ¬x2), (x1 ∨ x2)

}

U = {x1, x2}

T = x1 7→ TRUE, x2 7→ FALSE is a satisfying
truth assignment. Hence the given instance I

is satisfiable, i.e. I ∈ SAT.
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Further (basic) reductions

BOUNDED HALTING

PARTITION

VERTEX COVER (VC)

HAMILTONICITY CLIQUE

SATISFIABILITY (SAT)

3SAT

3-DIMENSIONAL
MATCHING (3DM)

Polynomial-time reductions (review)
L1 ∝ L2 means that

• R :
∑∗ →

∑∗ such that
x ∈ L1 ⇒ fR(x) ∈ L2 and
x 6∈ L1 ⇒ fR(x) 6∈ L2

Σ* Σ*

L2L1

• R ∈ Pf , i.e. R(x) is polynomial computable
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SATISFIABILITY ∝ 3-SATISFIABILITY

SAT 3SAT

Clauses with any Clauses with

number of literals
7−→

exactly 3 literals

• Cj is the j’th SAT-clause, and Cj

′

is the
corresponding 3SAT-clauses.

• yj are new, fresh variables, only used in Cj

′

.

Cj Cj

′

(x1 ∨ x2 ∨ x3) 7−→ (x1 ∨ x2 ∨ x3)

(x1 ∨ x2) 7−→ (x1 ∨ x2 ∨ yj), (x1 ∨ x2 ∨ ¬yj)

(x1) 7−→ (x1 ∨ y1
j ∨ y2

j ), (x1 ∨ ¬y1
j ∨ y2

j ),

(x1 ∨ y1
j ∨ ¬y2

j ), (x1 ∨ ¬y1
j ∨ ¬y2

j )

(x1 ∨ · · · ∨ x8) 7−→ (x1 ∨ x2 ∨ y1
j ), (¬y1

j ∨ x3 ∨ y2
j ),

(¬y2
j ∨ x4 ∨ y3

j ), (¬y3
j ∨ x5 ∨ y4

j ),

(¬y4
j ∨ x6 ∨ y5

j ), (¬y5
j ∨ x7 ∨ x8)

Question: Why is this a proper reduction?
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3-DIMENSIONAL MATCHING (3DM)
Instance: A set M of triples (a, b, c) such that
a ∈ A, b ∈ B, c ∈ C. All 3 sets have the same
size q (|A| = |B| = |C| = q).

Question: Is there a matching in M , i.e. a
subset M ′ ⊆M such that every element of A,
B and C is part of exactly 1 triple in M ′?

Example

z1x1

x2

x3

z2

z3

y2

y3

y1

M =
{
(x1, y1, z1), (x1, y2, z2),

(x2, y2, z2), (x3, y3, z3), (x3, y2, z1)
}

We will use sets with 3 elements to visualize
triples:

y1

x1 z1



Autumn 2008 6 of 23

Reductions are like translations from
one language to another. The same
properties must be expressed.

3SAT ∝ 3DM

3SAT 3DM

variables x1, · · · , xn 7−→ variables x
j
3
, a

j
3
, b2

j, c
1
k

literals x1,¬x1 7−→ variables x
j
1,¬x

j
1

clauses 7−→ triples (xj
1
, b1

j, b
2
j)

Cj = (x1 ∨ ¬x2 ∨ ¬x3) (¬x
j
3
, b1

j, b
2
j)

“There exists a sat. ”There is a

truth assignment”
7−→

matching”

“There is a truth assignment T ”

• ∃T : {x1, · · · , xn} → {TRUE, FALSE}

• T (xi) = TRUE ⇔ T (¬xi) = FALSE

The second property is easily translated to
the 3DM-world:

xi

ai

¬xi

T (Xi) = TRUE 7−→ xiis not “married”
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A literal xi can be used in many clauses. In
3DM we must have as many copies of xi as
there are clauses:

¬x4
i

x4
i

¬x3
i

x3
i

¬x2
i

x2
i

¬x1
i

x1
i

• Either all the black triples must be chosen
(“married”) or all the red ones!

• If T (xi) = TRUE then we choose all the red
triples, and the black copies of xi are free to
be used later in the reduction. And vice
versa.

•We make one such truth setting
component for each variable xi in 3SAT.
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“T is satisfying”

We translate each clause (example:
Cj = (x1 ∨ ¬x2 ∨ ¬x3)) into 3 triples:

x
j
1

b2
j

¬xj
2 ¬xj

3

b1
j

• b1
j and b2

j can be married if and only if at
least one of the literals in Cj is not married
in the truth setting component.

• If we have a satisifiable 3SAT-instance ,
then all b1

j and b2
j-variables (1 ≤ j ≤ m) can

be married.

• If we have a negative 3SAT-instance , then
some b1

j and b2
j-variables will not be

married.
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Cleaning up (“Garbage collection”)

There are many x
j
i who are neither married in

the truth settting components nor in the
“clause-satisfying” part. We introduce a
number of fresh c-variables who can marry
“everybody”:

· · ·

c1
k c2

k

¬x1
1

x1
1 ¬xm

n

xm
n

• There are m× n unmarried x-variables
after the truth setting part.

• If all m clauses are satisfiable then there
will remain (m× n)−m = m(n− 1)
unmarried x-variables.

• So we let 1 ≤ k ≤ m(n− 1).
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PARTITION

Instance: A finite set A and sizes s(a) ∈ Z
+ for

each a ∈ A.

Question: Can we partition the set into two
sets that have equal size, i.e. is there a subset
A′ ⊆ A such that

∑

a∈A′

s(a) =
∑

a∈A\A′

s(a)

3DM ∝ PARTITION

We first reduce 3DM to SUBSET SUM where
we are given A, as in PARTITION, but also a
number B, and where we are asked if it is
possible to choose a subset of A with sizes
that add up to B.

3DM SUBSET SUM

sets and

triples (subsets) 7−→ numbers

“There is

7−→

“There is

a matching M ′” a subset with

total size B”
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Difficulty: We need to translate from subsets
with 3 elements (triples) to numbers.

Solution: Use the characteristic
function of a set!

Example
Given set U = {x1, x2, . . . , xn} and subset
S = {x1, x3, x4}. The characteristic function of
S is a binary number with n digits and bit 1, 3
and 4 set to 1: 101100 · · · 0︸ ︷︷ ︸

n

.

There is a matchingM ′ ←→
There is a subsetM ′

∑

M ′

sizes = B

It is natural to set B =

n
︷ ︸︸ ︷
111 · · · 11, since each

element in the universe is used in exactly one
of the triples in the matching.

Technicality: Carry bits!

01b + 10b = 11b , but also 01b + 01b + 01b = 11b.



Autumn 2008 12 of 23

3DM-instance:
M ⊆ W ×X × Y

W = {w1, w2, · · · , wq}
Y = {y1, y2, · · · , yq}
Z = {z1, z2, · · · , zq}
M = {m1, m2, · · · , mk}

• For each triple mi ∈M we construct a
binary number:

...... 0 1 0 0...01 0 0 0 100

w2 wq x1 x2 xq y1 y2 yqw1

(log2 k) + 1

• This PARTITION/SUBSET SUM number
corresponds to the triple (w1, x2, y1).

• By adding log2 k zeros between every
“characteristic digit”, we eliminate
potential summation problems due to
overflow / carry bits.

•We make B as follows:

10001000100010001000 1000100010001000 .........
w2 wq x1 x2w1 yqy2y1xq
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SUBSET SUM ∝ PARTITION

•We introduce two new elements b1 and b2.

•We choose s(b1) and s(b2) so big that every
partition into to equal halves must have
s(b1) in one half and s(b2) in the other.

B

S(b1)

∑
S(a)−B

S(b2)

•We let s(b1) + B = s(b2) + (
∑

s(a)−B).

•We can pick a subset of A which adds up to
B if and only if we can split A ∪ {b1, b2} into
two equal halves.
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VERTEX COVER (VC)
Instance: A graph G with a set of vertices V

and a set of edges E, and an integer K ≤ |V |.

Question: Is there a vertex cover of G of size
≤ K?

“Can we place guards on at most K of the
intersections (vertices) such that all the
streets (edges) are surveyed?”

G
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3SAT ∝ VC

3SAT VERTEX COVER

literals 7−→ vertices

clauses 7−→ subgraphs

“There exists a sat. ”There is a VC

truth assignment”
7−→

of size K”

literals 7−→ vertices

ui ¬ui

• A guard must be placed in either ui or ¬ui

for the street between ui and ¬ui to be
surveyed.

• If we only allow |V | guards to be used for
all |V | streets of this kind, then we cannot
place guards at both ends.

• Placing a guard on ui corresponds to the
3SAT-literal ui being TRUE.

• Placing a guard on ¬ui corresponds to the
3SAT-literal ¬ui being TRUE (and the
ui-variable being assigned to FALSE).
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clause 7−→ subgraph

For clause Cj = (x1 ∨ ¬x2 ∨ ¬x3) we make the
following subgraph:

¬x2

x1

x1 ¬x2

¬x3

¬x3

•We need guards on two of three nodes in
the triangle to cover all three (blue) edges.

• If we are allowed to place only two guards
per triangle, then we cannot cover all three
outgoing edges.

• All 6 edges can be covered if and only if at
least one edge (red) is covered from the
outside vertex.

• By connecting the subgraph to the
“truth-setting” components, this translates
to one of the literals being TRUE (guarded)!
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Example
3SAT-instance:
U = {x1, x2, x3, x4} (n = 4)
C =

{
{x1,¬x2,¬x3}, {¬x1, x2,¬x4}

}
(m = 2)

¬x4¬x2 x4x2¬x1 ¬x3x3

x2x1 ¬x1¬x2

x1

¬x3 ¬x4

• Total number of guards K = n + 2m = 8.

• Should check that the reduction can be
computed in time polynomial in the length
of the 3SAT-instance . . .
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VERTEX COVER, CLIQUE AND

INDEPENDENT SET
For G = (V, E) and subset V1 ⊂ V , the
following statements are equivalent:

(a) V1 is a vertex cover of G

(b) V − V1 is an independent set in G

(c) V − V1 is a clique in Gc.

Corollary:

CLIQUE and INDEPENDENT SET are
NP-complete.
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HAMILTONICITY

Instance: Graph G = (V, E).

Question: Is there a Hamiltonian cycle/path
in G?

Is there a “tour” along the edges such that all
vertices are visited exactly once? (a
Hamiltonian cycle requires that we can go
back from the last node to the first node)

1v

5v

v2

v3

v4
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VC ∝ HAMILTONICITY

VC HAMILTONICITY

edges 7−→ edge gadgets

vertices 7−→ how gadgets are connected

K guards 7−→ K selector nodes

edges 7−→ edge gadgets

v2

v1

7−→
v1 v2

A Hamiltonian path can visit the vertices in
the edge gadget in one of three ways:

v1 v2 v1 v2 v1 v2

We want this to correspond to guards being
placed on v1 or v2 or both v1 and v2,
respectively.
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vertices 7−→ how gadgets are connected

For each vertex v2, we connect together in
serial all edge gadgets corresponding to
edges from v2:

v2

v3

v4

v1

7−→

v1 v2

v2 v3

• Any Hamiltonian path entering at the
v2-side (red arrow) can visit (if necessary)
all vertices in the serially-connected
gadgets and will eventually exit at bottom
on the v2-side.

• This corresponds to the VC-property that a
guard on v2 covers all outgoing edges from
v2.
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K guards 7−→ K selector nodes

We finish the construction by introducing K

selector nodes ai which are connected with all
“loose” edges:

v3

v4

v1

v2

v3

v3v1

v3v2

v2v1

v4

a2

a1



Autumn 2008 23 of 23

There is a VC
⇔

There is a

which uses K guards Hamiltonian cycle

v3

v3v1

v3v2

v2v1

v4

a2

a1

v4

v3

v2

v1


