NP-completeness (review)

$$
L \in \mathcal{N P C} \Leftrightarrow \begin{aligned}
& L \in \mathcal{N P} \text { Pand } \\
& L \in \mathcal{N P} \text {-hard }
\end{aligned}
$$

Today: Proving $\mathcal{N} \mathcal{P}$-completeness

- $L \in \mathcal{N} \mathcal{P}$: show that there is a "short" certificate of membership in L ("id card").
- $L \in \mathcal{N} \mathcal{P}$-hard: show that there is an "efficient" ${ }^{\text {t }}$ reduction from a known $\mathcal{N} \mathcal{P}$-hard problem $L_{n p}$ to L. \dagger polynomial (length, time ...)
- Transforming problems into each other.

Insight to gain

- Seeing unity in the midst of diversity: A variety of graph-theoretical, numerical, set \& other problems are just variants of one another.

But before we can use reductions we need the first $\mathcal{N} \mathcal{P}$-hard problem.

SATISFIABILITY (SAT)

Example
$I=C \cup U$
$C=\left\{\left(x_{1} \vee \neg x_{2}\right),\left(\neg x_{1} \vee \neg x_{2}\right),\left(x_{1} \vee x_{2}\right)\right\}$
$U=\left\{x_{1}, x_{2}\right\}$
$T=x_{1} \mapsto$ TRUE, $x_{2} \mapsto$ FALSE is a satisfying truth assignment. Hence the given instance I is satisfiable, i.e. $I \in$ SAT.

Further (basic) reductions

Polynomial-time reductions (review)

$L_{1} \propto L_{2}$ means that

- $R: \sum^{*} \rightarrow \sum^{*}$ such that
$x \in L_{1} \Rightarrow f_{R}(x) \in L_{2}$ and
$x \notin L_{1} \Rightarrow f_{R}(x) \notin L_{2}$

- $R \in P_{f}$, i.e. $R(x)$ is polynomial computable

SATISFIABILITY \propto 3-SATISFIABILITY

SAT
 3SAT
 Clauses with any
 number of literals exactly 3 literals

- C_{j} is the j 'th SAT-clause, and C_{j}^{\prime} is the corresponding 3SAT-clauses.
- y_{j} are new, fresh variables, only used in $C_{j}{ }^{\prime}$.

$$
\left.\begin{array}{rlc}
C_{j} & \begin{array}{c}
C_{j}^{\prime} \\
\left(x_{1} \vee x_{2} \vee x_{3}\right)
\end{array} & \left(x_{1} \vee x_{2} \vee x_{3}\right) \\
\left(x_{1} \vee x_{2}\right) & \longmapsto & \left(x_{1} \vee x_{2} \vee y_{j}\right),\left(x_{1} \vee x_{2} \vee \neg y_{j}\right)
\end{array}\right)
$$

Question: Why is this a proper reduction?

3-DIMENSIONAL MATCHING (3DM)

Instance: A set M of triples (a, b, c) such that $a \in A, b \in B, c \in C$. All 3 sets have the same size $q(|A|=|B|=|C|=q)$.

Question: Is there a matching in M, i.e. a subset $M^{\prime} \subseteq M$ such that every element of A, B and C is part of exactly 1 triple in M^{\prime} ?

Example

$$
\begin{aligned}
M=\{ & \left(x_{1}, y_{1}, z_{1}\right),\left(x_{1}, y_{2}, z_{2}\right), \\
& \left.\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right),\left(x_{3}, y_{2}, z_{1}\right)\right\}
\end{aligned}
$$

We will use sets with 3 elements to visualize triples:

Reductions are like translations from one language to another. The same properties must be expressed.

3SAT \propto 3DM

3SAT

3DM
variables $x_{1}, \cdots, x_{n} \longmapsto$ variables $x_{3}^{j}, a_{3}^{j}, b_{j}^{2}, c_{k}^{1}$
literals $x_{1}, \neg x_{1} \quad \longmapsto$ variables $x_{1}^{j}, \neg x_{1}^{j}$ clauses $\quad \longmapsto$ triples $\left(x_{1}^{j}, b_{j}^{1}, b_{j}^{2}\right)$
$C_{j}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \quad\left(\neg x_{3}^{j}, b_{j}^{1}, b_{j}^{2}\right)$
"There exists a sat.
"There is a truth assignment" \longmapsto matching"
"There is a truth assignment T "

- $\exists T:\left\{x_{1}, \cdots, x_{n}\right\} \rightarrow\{$ TRUE, FALSE $\}$
- $T\left(x_{i}\right)=$ TRUE $\Leftrightarrow T\left(\neg x_{i}\right)=$ FALSE

The second property is easily translated to the 3DM-world:

$T\left(X_{i}\right)=$ TRUE $\longmapsto x_{i}$ is not "married"

A literal x_{i} can be used in many clauses. In 3DM we must have as many copies of x_{i} as there are clauses:

- Either all the black triples must be chosen ("married") or all the red ones!
- If $T\left(x_{i}\right)=$ TRUE then we choose all the red triples, and the black copies of x_{i} are free to be used later in the reduction. And vice versa.
- We make one such truth setting component for each variable x_{i} in 3SAT.

" T is satisfying"

We translate each clause (example:
$C_{j}=\left(x_{1} \vee \neg x_{2} \vee \neg x 3\right)$) into 3 triples:

- b_{j}^{1} and b_{j}^{2} can be married if and only if at least one of the literals in C_{j} is not married in the truth setting component.
- If we have a satisifiable 3SAT-instance , then all b_{j}^{1} and b_{j}^{2}-variables $(1 \leq j \leq m)$ can be married.
- If we have a negative 3SAT-instance , then some b_{j}^{1} and b_{j}^{2}-variables will not be married.

Cleaning up ("Garbage collection")

There are many x_{i}^{j} who are neither married in the truth settting components nor in the "clause-satisfying" part. We introduce a number of fresh c-variables who can marry "everybody":

- There are $m \times n$ unmarried x-variables after the truth setting part.
- If all m clauses are satisfiable then there will remain $(m \times n)-m=m(n-1)$ unmarried x-variables.
- So we let $1 \leq k \leq m(n-1)$.

Partition

Instance: A finite set A and sizes $s(a) \in \mathbb{Z}^{+}$for each $a \in A$.

Question: Can we partition the set into two sets that have equal size, i.e. is there a subset $A^{\prime} \subseteq A$ such that

$$
\sum_{a \in A^{\prime}} s(a)=\sum_{a \in A \backslash A^{\prime}} s(a)
$$

3DM \propto Partition

We first reduce 3DM to Subset Sum where we are given A, as in Partition, but also a number B, and where we are asked if it is possible to choose a subset of A with sizes that add up to B.

3DM

sets and
triples (subsets) $\longmapsto \quad$ numbers
"There is
a matching $M^{\prime \prime \prime} \longmapsto$ a subset with
total size B "

Difficulty: We need to translate from subsets with 3 elements (triples) to numbers.

Solution: Use the characteristic function of a set!

Example

Given set $U=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and subset $S=\left\{x_{1}, x_{3}, x_{4}\right\}$. The characteristic function of S is a binary number with n digits and bit 1,3 and 4 set to $1: \underbrace{101100 \cdots 0}_{n}$.

There is a subset M^{\prime}
There is a matching $M^{\prime} \longleftrightarrow$

$$
\sum_{M^{\prime}} \text { sizes }=B
$$

It is natural to set $B=\overbrace{11 \cdots 11}^{n}$, since each element in the universe is used in exactly one of the triples in the matching.

Technicality: Carry bits!
$01_{b}+10_{b}=11_{b}$, but also $01_{b}+01_{b}+01_{b}=11_{b}$.

3DM-instance:

$M \subseteq W \times X \times Y$
$W=\left\{w_{1}, w_{2}, \cdots, w_{q}\right\}$
$Y=\left\{y_{1}, y_{2}, \cdots, y_{q}\right\}$
$Z=\left\{z_{1}, z_{2}, \cdots, z_{q}\right\}$
$M=\left\{m_{1}, m_{2}, \cdots, m_{k}\right\}$

- For each triple $m_{i} \in M$ we construct a binary number:

- This Partition/Subset Sum number corresponds to the triple (w_{1}, x_{2}, y_{1}).
- By adding $\log _{2} k$ zeros between every "characteristic digit", we eliminate potential summation problems due to overflow / carry bits.
- We make B as follows:

SUBSET SUM \propto Partition

- We introduce two new elements b_{1} and b_{2}.
- We choose $s\left(b_{1}\right)$ and $s\left(b_{2}\right)$ so big that every partition into to equal halves must have $s\left(b_{1}\right)$ in one half and $s\left(b_{2}\right)$ in the other.

- We let $s\left(b_{1}\right)+B=s\left(b_{2}\right)+\left(\sum s(a)-B\right)$.
- We can pick a subset of A which adds up to B if and only if we can split $A \cup\left\{b_{1}, b_{2}\right\}$ into two equal halves.

Vertex Cover (VC)

Instance: A graph G with a set of vertices V and a set of edges E, and an integer $K \leq|V|$.

Question: Is there a vertex cover of G of size $\leq K$?
"Can we place guards on at most K of the intersections (vertices) such that all the streets (edges) are surveyed?"

3SAT \propto VC

3SAT

literals
clauses
"There exists a sat. truth assignment"

Vertex Cover

$\longmapsto \quad$ vertices
$\longmapsto \quad$ subgraphs
"There is a VC of size K "

literals \longmapsto vertices

- A guard must be placed in either u_{i} or $\neg u_{i}$ for the street between u_{i} and $\neg u_{i}$ to be surveyed.
- If we only allow $|V|$ guards to be used for all $|V|$ streets of this kind, then we cannot place guards at both ends.
- Placing a guard on u_{i} corresponds to the 3SAT-literal u_{i} being TRUE.
- Placing a guard on $\neg u_{i}$ corresponds to the 3SAT-literal $\neg u_{i}$ being TRUE (and the u_{i}-variable being assigned to FALSE).

clause \longmapsto sulbgraph

For clause $C_{j}=\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right)$ we make the following subgraph:

- We need guards on two of three nodes in the triangle to cover all three (blue) edges.
- If we are allowed to place only two guards per triangle, then we cannot cover all three outgoing edges.
- All 6 edges can be covered if and only if at least one edge (red) is covered from the outside vertex.
- By connecting the subgraph to the "truth-setting" components, this translates to one of the literals being true (guarded)!

Example

3SAT-instance:

$$
\begin{aligned}
& U=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \quad(n=4) \\
& C=\left\{\left\{x_{1}, \neg x_{2}, \neg x_{3}\right\},\left\{\neg x_{1}, x_{2}, \neg x_{4}\right\}\right\} \quad(m=2)
\end{aligned}
$$

- Total number of guards $K=n+2 m=8$.
- Should check that the reduction can be computed in time polynomial in the length of the 3SAT-instance ...

VERTEX COVER, CLIQUE and INDEPENDENT SET

For $G=(V, E)$ and subset $V_{1} \subset V$, the following statements are equivalent:
(a) V_{1} is a vertex cover of G
(b) $V-V_{1}$ is an independent set in G
(c) $V-V_{1}$ is a clique in G^{c}.

Corollary:
CLIQUE and INDEPENDENT SET are NP-complete.

Hamiltonicity

Instance: Graph $G=(V, E)$.
Question: Is there a Hamiltonian cycle/path in G ?

Is there a "tour" along the edges such that all vertices are visited exactly once? (a Hamiltonian cycle requires that we can go back from the last node to the first node)

vertices $\longmapsto \quad$ how gadgets are connected K guards $\longmapsto \quad K$ selector nodes

edges \longmapsto edge gadgets

A Hamiltonian path can visit the vertices in the edge gadget in one of three ways:

We want this to correspond to guards being placed on v_{1} or v_{2} or both v_{1} and v_{2}, respectively.

For each vertex v_{2}, we connect together in serial all edge gadgets corresponding to edges from v_{2} :

- Any Hamiltonian path entering at the v_{2}-side (red arrow) can visit (if necessary) all vertices in the serially-connected gadgets and will eventually exit at bottom on the v_{2}-side.
- This corresponds to the VC-property that a guard on v_{2} covers all outgoing edges from v_{2}.

We finish the construction by introducing K selector nodes a_{i} which are connected with all "loose" edges:

There is a VC which uses K guards

There is a
Hamiltonian cycle

