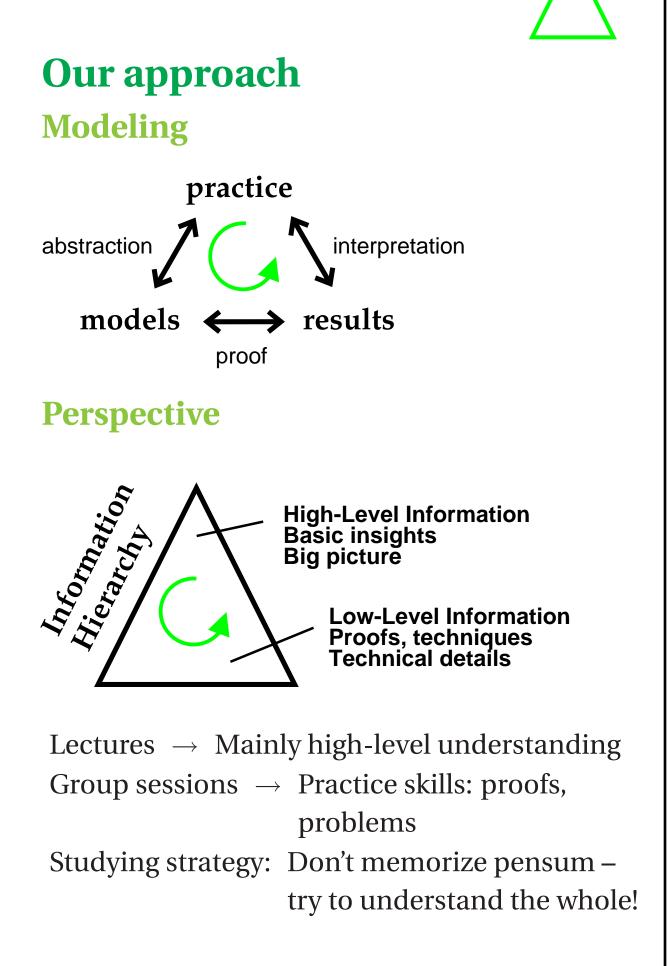
Undecidability and Complexity in Five Lectures

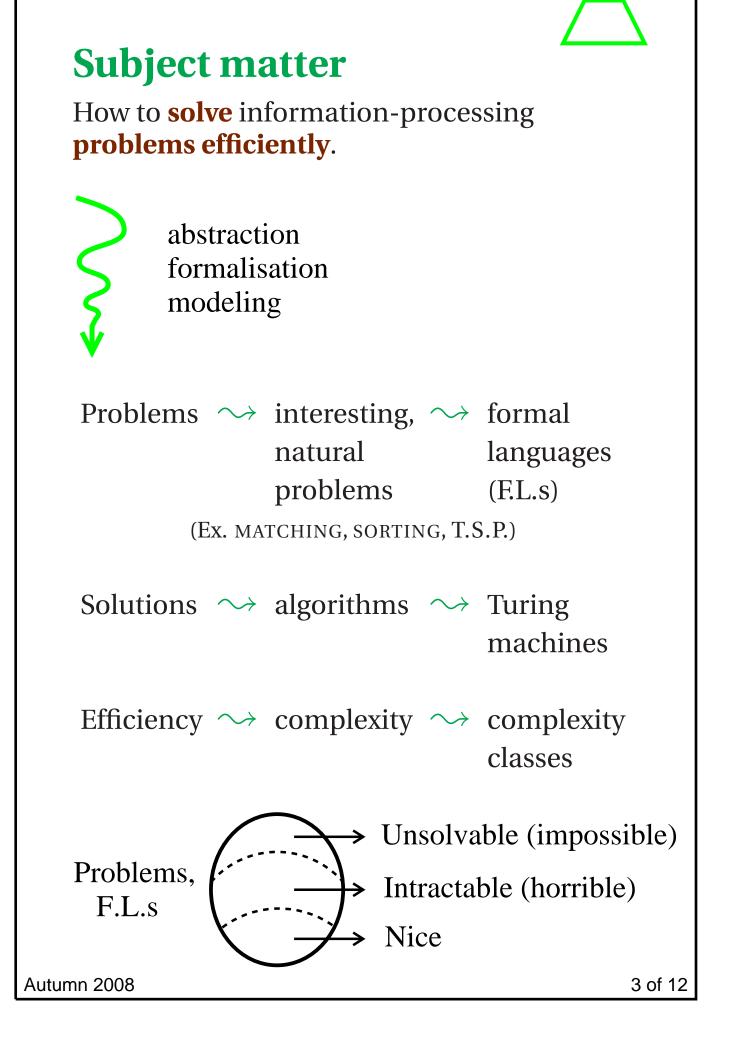
Overview

- Lecture 1: Modeling Problems and Solutions.
- Lecture 2: Unsolvability
- Lecture 3: Intractability.
- Lecture 4: Proving Intractability.
- Lecture 5: Coping With Intractability.

Lecture 1 overview

- Our approach modeling
- The subject matter what is this all about
- Historical introduction
- How to model problems
- How to model solutions



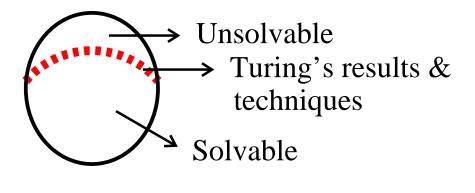


Historical introduction

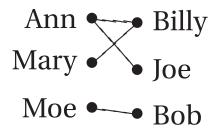
In mathematics (cooking, engineering, life) solution = algorithm

Examples:

- $\sqrt{253} =$
- $\bullet ax^2 + bx + c = 0$
- Euclid's g.c.d. algorithm the earliest non-trivial algorithm?
- \exists algorithm? \rightarrow metamathematics
 - K. Gödel (1931): nonexistent theories
 - A. Turing (1936): nonexistent algorithms (article: "On computable Numbers")



- Von Neumann (ca. 1948): first computer
- Edmonds (ca. 1965): an algorithm for MAXIMUM MATCHING



Edmonds' article rejected based on existence of trivial algorithm: Try all possibilities!

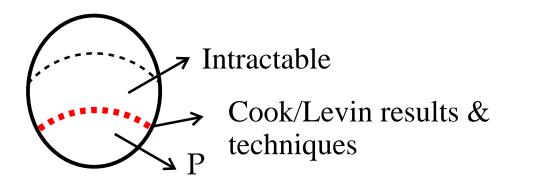
Complexity analysis of trivial algorithm (using approximation)

- *n* = 100 **boys**
- $n! = 100 \times 99 \times \cdots \times 1 \ge 10^{90}$ possibilities
- assume $\leq 10^{12}$ possibilites tested per second
- $\bullet \leq 10^{12+4+2+3+2} \leq 10^{23}$ tested per century
- running time of trivial algorithm for n = 100 is $\geq 10^{90-23} = 10^{67}$ centuries!

Compare: "only" ca. 10¹³ years since Big Bang!

Autumn 2008

- ∃ polynomial-time algorithm for a given problem?
- Cook / Levin (1972): *NP*-completeness



Problems, formal languages

All the world's Ex. compute salaries, information-processing *control Lunar* module landing problems graphs, numbers ... "Interesting", MATCHING "natural" TSP problems SORTING inp. outp. **Functions** (sets of I/O pairs) output= YES/NO Formal languages (sets of 'YES-strings')

Problem = set of strings (over an alphabet). Each string is (the encoding of) a YES-instance.

Def. 1 *Alphabet* = finite set of symbols

Ex. $\sum = \{0, 1\}$; $\Sigma = \{A, \dots, Z\}$

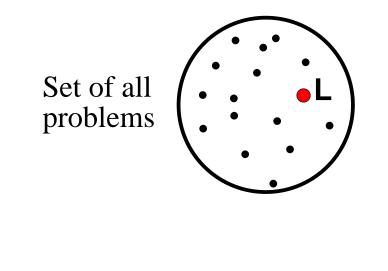
Coding: binary \leftrightarrow ASCII

Def. 2 $\sum^* = all finite strings over \sum$

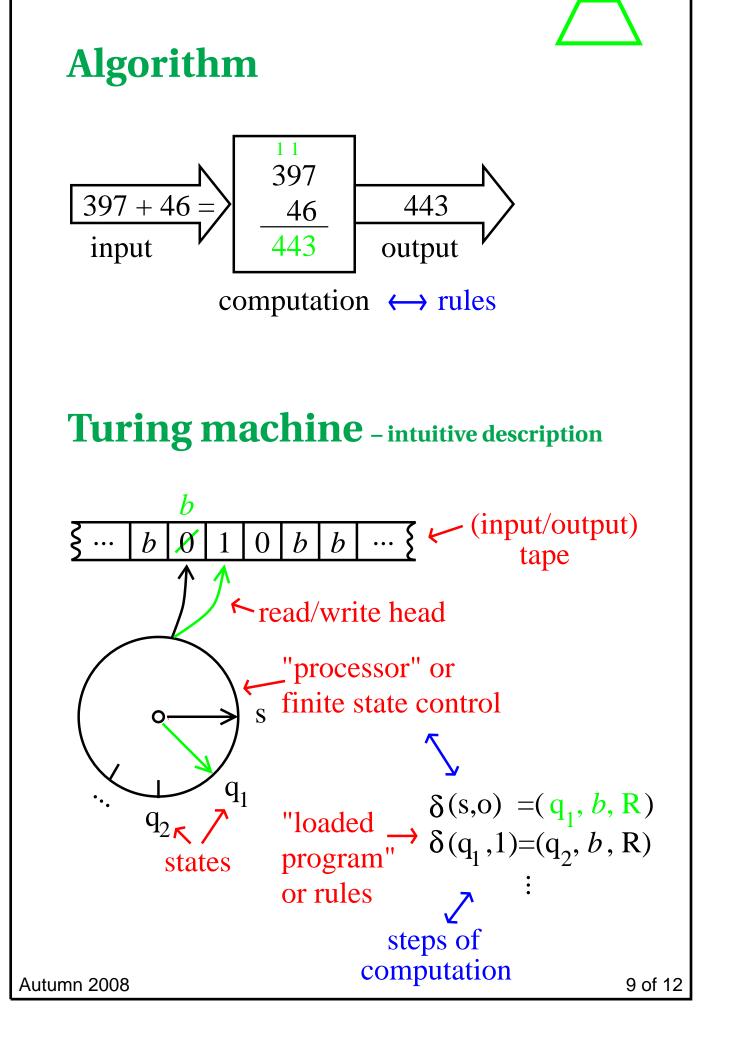
 $\sum^* = \{\epsilon, 0, 1, 00, 01, \cdots\}$ — in lexicographic order

Def. 3 A *formal language* L over \sum is a subset of \sum^*

L is the set of all "YES-instances".



Autumn 2008



We say that Turing machine *M* **decides language L** if (and only if) *M* computes the function

 $f: \Sigma^* \to \{Y, N\}$ and for each $x \in L: f(x) = Y$ for each $x \notin L: f(x) = N$

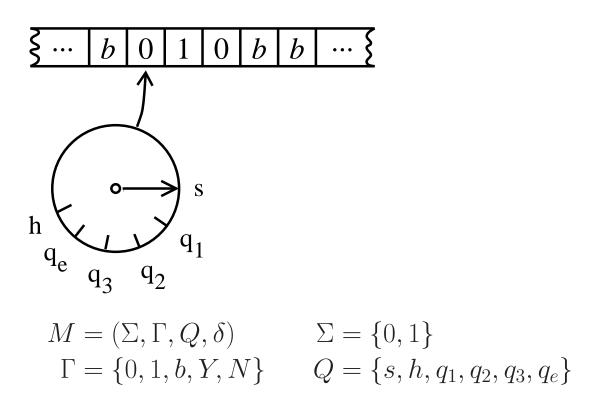
Language L is **(Turing) decidable** if (and only if) there is a Turing machine which decides it.

We say that Turing machine *M* accepts language L if *M* halts if and only if its input is an string in L.

Language L is **(Turing) acceptable** if (and only if) there is a Turing machine which accepts it.

Example

A Turing machine M which decides $L = \{010\}.$



 δ :

	0	1	b
S	(q_1, b, R)	(q_e, b, R)	(h, N, -)
			(h, N, -)
			(h, N, -)
	(q_e, b, R)		
q_e	(q_e, b, R)	(q_e, b, R)	(h, N, -)

('-' means "don't move the read/write head")

Autumn 2008

11 of 12

Church's thesis

'Turing machine' \cong 'algorithm'

Turing machines can compute every function that can be computed by some algorithm or program or computer.

'Expressive power' of PL's

Turing complete programming languages.

'Universality' of computer models

Neural networks are Turing complete (Mc Cullok, Pitts).

Uncomputability

If a Turing machine cannot compute *f*, no computer can!