
INF4140, 2012. Exercises, set 4 (Monitors)

Exercises from the book

5.2, 5.3, 5.7, 5.8

It is hard to get all the signaling details of 5.7b) right. However, you should try to describe
the waiting conditions for each kind of process.
For 5.8c): Only describe the changes you need to do, any actual programming is not necessary.
Do you need any additional data-structure? If yes, how should this structure be manipulated?

Monitor solution to the Readers/writers problem

This monitor is used to control reader- and writer access to a shared resource. (fig. 5.5 in
Andrews)

monitor RW_Controller {

int nr = 0, nw = 0; ## (nr == 0 OR nw == 0) AND nw <= 1

cond oktoread; # signaled when nw == 0

cond oktowrite; # signaled when nr == 0 and nw == 0

procedure request_read() {

while (nw > 0) wait(oktoread);

nr = nr + 1;

}

procedure release_read() {

nr = nr - 1;

if (nr == 0) signal(oktowrite); # awaken one writer

}

procedure request_write() {

while (nr > 0 || nw > 0) wait(oktowrite);

nw = nw + 1;

}

procedure release_write() {

nw = nw - 1;

signal(oktowrite); # awaken one writer and

signal_all(oktoread); # all readers

}

}

You may assume that signaling is handled by the signal and continue discipline.

1. In the monitor the primitive signal_all is used. Modify the monitor so that it uses
signal.

2. In the given monitor readers take presence over writers. Modify the monitor such that
writes take presence over readers.

Someone comes up with the following modified versions of request_read and release_write

to solve this problem:

1

procedure request_read() {

while (nw > 0 || !empty(oktowrite)) wait(oktoread);

nr = nr + 1;

}

procedure release_write() {

nw = nw - 1;

if (!empty(oktowrite) signal(oktowrite);

else signal_all(oktoread);

}

Even though it may seem like a straight forward solution, it does not guarantee prefe-
rence to writers. (Try to imagine why before continue reading.)

Consider the situation where exactly one writer process is delayed on oktowrite when
another writer starts execution of release_write. After signal(oktowrite), the wai-
ting writer is moved back into the entry queue of the monitor. Now, empty(oktowrite)
is true and nw == 0. Thus, a newly arriving reader is given access to the shared resource.

Thus, !empty(oktowrite) is not a sufficient condition to guarantee absence of waiting
writers. In this and the remaining parts of the exercise, we will therefore follow the
outline from exercise 5.7 and use counters to count the number of delayed processes.

3. Modify the monitor so that readers and writers is allowed to access the resource in turns,
if both readers and writers want to access the resource.

4. Modify the monitor such that both readers and writers access the resource in a first-
come-first-served (FCFS) manner. Allow more than one reader to access the resource
as long as the FCFS-principle is satisfied.

Assume given a (FIFO) queue q with the following operations; enqueue(q,X) returns q with
the element X added at the end of the queue. The operation dequeue(q) returns q with the
first element removed and inspect(q) returns the first element of the queue without altering
q. This queue will be used to order the processes. The operation empty(q) returns true only
when q is empty, and an empty queue is declared by the statement

queue q = empty

Additional exercise

As an extra challenge, you may try to solve the Cigarette Smokers Problem, Exercise 4.27 in
Andrews. This is a surprisingly hard problem, and beyond what you will be expected to solve
at the final exam.

You might take the following discussion as a starting point. First we model the agent.

Initially, the agent is ready to put ingredients on the table

This semaphore is used to make the agent wait for a smoker to finish

sem go = 1;

2

These are one if the corresponding ingredience is on the table

sem tobacco = 0, paper = 0, match = 0;

process Agent {

co

while (true) {

P(go); V(tobacco); V(paper);

}

||

while (true) {

P(go); V(tobacco); V(match);

}

||

while (true) {

P(go); V(paper); V(match);

}

co

}

A first attempt to model the smokers might be something like this (the process called
Match is the one needing matches and so on).

process Match { process Tobacco process Paper

while (true) { while (true) { while (true) {

P(tobacco); P(paper); P(tobacco);

P(paper); P(match); P(match);

make cigarette # make cigarette # make cigarette

V(go); V(go); V(go);

} } }

} } }

However, this solution has serve deadlock problems. For instance, if tobacco and paper

is on the table, the process Match should make a cigarette. However the Paper process may
pick up the tobacco before Match, leading to a deadlock.

Notice that the agent is only allowed to communicate with the smokers through the four
given semaphores. It is therefore no solution to add three other semaphores used to announce
which ingredient the agent did not put on the table.

3

