
INF4140, 2012. Exercise 7

While program

Consider the following program S:

S: x = 0; y = b;

while (x < y) { x = x + 2; y = y + 1 }

Prove that the following triple is a theorem in PL:

{b ≥ 0} S {x == 2 ∗ b}

You may use the following predicate I as loop invariant:

I : x ≤ y ∧ x == 2(y − b)

Factorial function

Consider the following program S:

S: i = 0; x = 1;

while (i < n) {

i = i + 1;

x = x * i;

}

Prove the following triple using PL:

{n ≥ 0} S {x == n!}

As a loop invariant I, you may use: I : x == i! ∧ i ≤ n.

You may assume the following when reasoning about the factorial function:
1) 0! == 1
2) (j + 1)! == j! ∗ (j + 1) for any integer j ≥ 0

Monitor verification

Consider the monitor for Shortest-Job-Next allocation in the book (section 5.2.3). Use Pro-
gramming Logic, extended with rules for signal and wait (lecture slides, week 6), to prove
that this monitor satisfies the second part of the SJN invariant:

free⇒ (#turn == 0)

(You may use the rule for wait(cv) to reason about wait(cv,rank)).

Hint. When arriving at an implication, it is enough to argue for the truth of it. However, we
may use the following rules when reasoning about implications.

false⇒ A

(A ∧B)⇒ C

A⇒ (B ⇒ C)

(A ∧B)⇒ C

((A⇒ B) ∧A)⇒ C

(¬A) ∨B

A⇒ B

1



From the book

2.22, 2.16, 2.24, 2.31, (2.28a, 2.29a)

2


