
Introduction

INF4140

30.08.12

Lecture 1

INF4140 (30.08.12) Introduction Lecture 1 1 / 34

Models of concurrency

Lecturers

Crystal Din
office: 8167 email: crystald@ifi.uio.no phone: 22 84 08 52

Lizeth Tapia
office: 8167 email: sltarifa@ifi.uio.no phone: 22 84 08 52

Homepage for the course

http://www.uio.no/studier/emner/matnat/ifi/INF4140/h12

Syllabus (see the homepage for details)

Gregory R. Andrews: Foundations of Multithreaded, Parallel, and
Distributed Programming

The paper: Intra-Object versus Inter-Object: concurrency and
Reasoning in Creol

INF4140 (30.08.12) Introduction Lecture 1 2 / 34

http://www.uio.no/studier/emner/matnat/ifi/INF4140/h12

Models of concurrency

Lectures

Thur. 12:15 - 14:00, Room Shell, Ole-Johan Dahls Hus

Exercise course

Tutor: Crystal Din and Lizeth Tapia

Mondays 14:15 - 16:00, Room Java, Ole-Johan Dahls Hus

Starts next week.

Evaluation

Three compulsory assignments which must be approved.

Final exam: 17 December at 14:30 (4 hours).

INF4140 (30.08.12) Introduction Lecture 1 3 / 34

Today’s agenda

Introduction

contents of the course

motivation: why is this course important

some simple examples and considerations

Start

a bit about concurrent programming with critical sections and waiting

interference

the await language

INF4140 (30.08.12) Introduction Lecture 1 4 / 34

What this course is about

Fundamental issues related to cooperating parallel processes

How to think about developing parallel processes

Various language mechanisms and paradigms

Deeper understanding of parallel processes: (informal and somewhat
formal) analysis, properties

INF4140 (30.08.12) Introduction Lecture 1 5 / 34

Parallel processes

Sequential program: one control flow thread

Parallel program: several control flow threads

Parallel processes need to exchange information.
We will study two different ways to organize communication between
processes:

Reading from and writing to shared variables (part I of the course)

Communication with messages between processes (part II of the
course)

INF4140 (30.08.12) Introduction Lecture 1 6 / 34

Overview of topics in the course - Part I: Shared variables

atomic operations

interference

deadlock, livelock, liveness, fairness

parallel programs with locks, critical sections and (active) waiting

semaphores and passive waiting

monitors

formal analysis (Hoare logic), invariants

Java: threads and synchronization

INF4140 (30.08.12) Introduction Lecture 1 7 / 34

Overview of topics in the course - Part II: Communication

asynchronous and synchronous message passing

Basic mechanisms: RPC (remote procedure call), rendezvous,
client/server setting, channels

Java’s mechanisms

analysis using histories

asynchronous systems

standard examples

INF4140 (30.08.12) Introduction Lecture 1 8 / 34

Part I: shared variables

Language mechanisms and theory for processes which operate on
shared global variables.

Why use shared variables?

Here’s the situation: There may be several CPUs inside one machine.

natural interaction for tightly coupled systems

used in many important languages, as in Java’s concept of threads

do as if one has many processes, in order to get a natural partitioning

can achieve greater efficiency if several things happen at the same time

e.g. several active windows at the same time

INF4140 (30.08.12) Introduction Lecture 1 9 / 34

Simple example

We have global variables x , y , and z . Consider the following program:

pre post
{x is a and y is b} x := x + z ; y := y + z ; {x is a+z and y is b+z}

If we have operations that can be performed independently of one another,

then it can be advantageous to perform these concurrently.
• The conditions describe the state of the global variables before and after
the program statement and are called, respectively, pre- and
post-conditions.
• These conditions are meant to give an understanding of the program, and
are not part of the executed code.
Can we use parallelism here?

INF4140 (30.08.12) Introduction Lecture 1 10 / 34

Parallel operator

Extends the language with a construction for parallel composition:

co S1 || S2 || . . . || Sn oc;

Execution of a parallel composition happens via the concurrent execution of
the component processes S1, . . . , Sn and terminates normally if all
component processes terminate normally.
Example Thus we can write an example as follows:

{x is a and y is b} co x := x + z || y := y + z oc; {x is a+z and y is b+z}

INF4140 (30.08.12) Introduction Lecture 1 11 / 34

Interaction between processes

Processes which live in the same system can interact with each other in
two different ways:

Cooperation to obtain a result

Competition for common resources

The organization of this interaction is what we will call synchronization.

Mutual exclusion (Mutex). We introduce critical sections of program
instructions which can not be executed concurrently.

Condition synchronization. A process must wait for a specific
condition to be satisfied before execution can continue.

INF4140 (30.08.12) Introduction Lecture 1 12 / 34

Concurrent processes: Atomic operations

Definition from the book: An operation is atomic if it cannot be
subdivided into smaller components.
Alternative definition: An operation is atomic if it can be understood
without dividing it into smaller components.
What is atomic depends on which language we work with: fine-grained and
coarse-grained atomicity.
e.g.: Reading and writing of a global variable is usually atomic. Some
(high-level) languages can have assignment x := e as one atomic
operation, others as several: reading of the variables in the expression e,
computation of the value e, followed by writing to x .
Note: A statement with at most one atomic component operation, in
addition to operations on local variables, can be considered atomic!
Note: We can do as if atomic operations do not happen concurrently!

INF4140 (30.08.12) Introduction Lecture 1 13 / 34

Atomic operations: global variables

The treatment of global variables is fundamental:
Also, the communication between processes can be represented by
variables, e.g. a communication channel as a variable of type vector.
We associate with each global variable a set of atomic operations, e.g.
reading and writing to normal global variables, sending and receiving of
communication channels, etc. Atomic operations on a variable x are called
x-operations.

Mutual exclusion

Atomic operations on a variable cannot happen simultaneously.

INF4140 (30.08.12) Introduction Lecture 1 14 / 34

Example

Consider the following program:

P1 P2

{x==0} co x := x + 1||x := x − 1 oc; {?}

What will be the final state here?

We assume that each process is executed on its own processor, with
its own registers, and that x is part of a shared state space with global
variables.

Arithmetic operations in the two processes can be executed
simultaneously, but read and write operations on x must be performed
sequentially.

The order of these operations is dependent on relative processor speed.

The outcome of such programs thus becomes very difficult to predict!

INF4140 (30.08.12) Introduction Lecture 1 15 / 34

Atomic read and write operations

P1 P2

{x==0} co x := x + 1||x := x − 1 oc; {?}

There are 4 atomic x-operations: P1 reads (R1) value of x , P1 writes (W1)
a value into x , P2 reads (R2) value of x , and P2 writes (W2) a value into x .
R1 must happen before W1 and R2 before W2, so these operations can be
sequenced in 6 ways:

R1 R1 R1 R2 R2 R2
W1 R2 R2 R1 R1 W2
R2 W1 W2 W1 W2 R1
W2 W2 W1 W2 W1 W1

0 -1 1 -1 1 0

From this table we can obtain the final state of the program:
x=−1 ∨ x=0 ∨ x=1. The program is thus non-deterministic : the result
can vary from execution to execution.

int x := 0; co x := x + 1||x := x − 1 oc; {x =−1 ∨ x=0 ∨ x=1}
INF4140 (30.08.12) Introduction Lecture 1 16 / 34

Number of possible executions

If we have 3 processes, each with a given number of atomic operations, we
will obtain the following number of possible executions:

process 1 process 2 process 3 number of executions
2 2 2 90
3 3 3 1680
4 4 4 34 650
5 5 5 756 756

NB: Different executions can lead to different final states.
Impossible, even for quite simple systems, to consider every possible
execution!

Different executions

For n processes with m atomic statements each, the formula is

(n ∗ m)!

m!n

INF4140 (30.08.12) Introduction Lecture 1 17 / 34

The “at-most-once” property

Definition. If an expression e in one process does not reference a variable
altered by another process, expression evaluation will appear to be atomic.
An assignment x := e satisfies the property if either e satisfies the property
and x is not referenced by others, or e does not reference any shared
variables and x can be read or written by other processes.
Such expressions/statements can be considered atomic!
Examples:

x := 0; y := 0; co x := x + 1||y := x + 1 oc
x := 0; y := 0; co x := y + 1||y := x + 1 oc; {x and y is 1 or 2}
x := 0; y := 0; co x := y + 1||x := y + 3||y := 1 oc; {y =1 ∧ x= 1, 2, 3, 4}
co z := y + 1||z ′ := y − 1||y := 5 oc
z := x − x ||... {is z now 0?}
x := x ||... {same as skip?}
if y > 0 then y := y − 1 fi||if y > 0 then y := y − 1 fi

INF4140 (30.08.12) Introduction Lecture 1 18 / 34

The course’s first programming language: the “await”

language

the usual sequential, imperative constructions such as assignment, if-,
for- and while-statements

cobegin-construction for parallel activity

processes

critical sections

await-statements for (active) waiting and conditional critical sections

INF4140 (30.08.12) Introduction Lecture 1 19 / 34

Programming language: Syntax

We use the following syntax for basic constructions

Declarations Assignments
int i = 3; x = e;

int a[1:n]; a[i] = e;

int a[n];1 a[n]++;

int a[1:n] = ([n] 1); sum += i;

Compound statement { statements }

Conditional if (condition) statement

While-loop while (condition) statement

For-loop for [i=0 to n-1] statement

1corresponds to: int a[0:n-1]

INF4140 (30.08.12) Introduction Lecture 1 20 / 34

Parallel statements

coS1||S2|| . . . ||Snoc ;

Each arm Si contains a program statement which is executed in
parallel with the other arms.

The co-statement terminates when all the arms Si have terminated.

The next instruction after the co-statement is executed after the
co-statement has terminated.

INF4140 (30.08.12) Introduction Lecture 1 21 / 34

Parallel processes

process foo {

int sum := 0;

for [i= 1 to 10]

sum += i;

x := sum;

}

Processes run in the background

Processes evaluated in arbitrary order.

Processes are declared (as methods/functions)

INF4140 (30.08.12) Introduction Lecture 1 22 / 34

Example

process bar1 {

for [i = 1 to n]

write(i); }

Starts one process.

The numbers are printed in
increasing order.

process bar2[i=1 to n] {

write(i);

}

Starts n processes.

The numbers are printed in
arbitrary order because the
execution order of the processes
is non-deterministic.

INF4140 (30.08.12) Introduction Lecture 1 23 / 34

Read- and write-variables

Let V : statement −→ variable set be a syntactic function which
computes the set of global variables which are referenced in the program.
W : statement −→ variable set is the set of (write)variables which can be
changed by the program.

V[v:=e] = V[e] ∪ {v} W[v:=e] = {v}
V[S1;S2] = V[S1] ∪ V[S2] W[S1;S2] = W[S1] ∪W[S2]
V[if (b) S] = V[b] ∪V[S] W[if (b) S] = W[S]
V[while (b) S] = V[b] ∪ V[S] W[while (b) S] = W[S]

where V[e] is the set of variables in expression e.

INF4140 (30.08.12) Introduction Lecture 1 24 / 34

Disjoint processes

Parallel processes are without interference if they are disjoint, i.e. without
common global variables:

V[S1] ∩ V[S2] = ∅

Meanwhile, variables which are only read cannot give rise to interference.
The following interference criterion is thus sufficient:

V[S1] ∩W[S2] = W[S1] ∩ V[S2] = ∅

INF4140 (30.08.12) Introduction Lecture 1 25 / 34

Semantic concepts

A state in a parallel program consists of the values of the global
variables at a given moment in the execution.

Each process executes independently of the others by modifying global
variables using atomic operations.

An execution of a parallel program can be modelled using a history,
i.e. a sequence of operations on global variables, or as a sequence of
states.

For non-trivial parallel programs there are very many possible histories.

Synchronization is used to limit the possible histories.

INF4140 (30.08.12) Introduction Lecture 1 26 / 34

Properties

A property of a program is a predicate which is true for all possible histories
of the program.

Two types:

Safety properties say that the program will not reach an undesirable

state

Liveness properties say that the program will reach a desirable state.

Partial correctness: The program reaches a desired final state if the
program terminates (safety property).

Termination: All histories have finite length.

Total correctness: The program terminates and is partially correct.

INF4140 (30.08.12) Introduction Lecture 1 27 / 34

Properties: Invariants

Definition A common property for all states which can be reached during
execution, i.e. a property which holds at any time.

safety property

appropriate for non-terminating systems (does not talk about a final
state)

global invariant talks about the state of many processes at once,
preferably the entire system

local invariant talks about the state of one process

one can show that an invariant is correct by showing that it holds
initially, and that each atomic statement maintains it.
Note: we avoid looking at all possible executions!

INF4140 (30.08.12) Introduction Lecture 1 28 / 34

How to check properties of programs?

Testing or debugging increases our confidence in a program, but gives
no guarantee of correctness.

Operational reasoning considers all histories of a program.

Formal analysis: Method for reasoning about the properties of a
program without considering the histories one by one.

A test can show an error, but can never prove correctness!

INF4140 (30.08.12) Introduction Lecture 1 29 / 34

Critical sections

Mutual exclusion: combines sequences of operations in a critical section
which then behave like atomic operations.

When the non-interference requirement parallel processes does not
hold, we use synchronization to restrict the possible histories.

Synchronization gives coarse-grained atomic operations.

The notation < S > means that S is performed atomically.

Atomic operations:

Internal states are not visible to other processes.

Variables cannot be changed by other processes.

Example The example from before can now be written as:

int x := 0; co < x := x + 1 > || < x := x − 1 > oc; {x is 0 here}

INF4140 (30.08.12) Introduction Lecture 1 30 / 34

Conditional critical sections

Introduce the following expression:
< await (B) S; >

The Boolean expression B specifies an await condition.

The angle brackets indicate that the body S is executed as an atomic
operation.

Example < await (y > 0) y := y-1; >

The variable y is first decremented when the condition y > 0 holds.

INF4140 (30.08.12) Introduction Lecture 1 31 / 34

Conditional critical sections (2)

Mutex:
< x := x+1 ; y := y+1 ; >

Condition synchronization:

< await (counter > 0) ; >

We can use await to specify both synchronization methods:
int counter = 1;

...
< await (counter > 0) counter := counter-1; > start section

critical statements;
counter := counter+1; end section

Invariant: 0 ≤ counter ≤ 1

INF4140 (30.08.12) Introduction Lecture 1 32 / 34

Example: producer/consumer synchronization

Let Producer be a process which delivers data to a Consumer process.
int buf, p := 0, c := 0;

process Producer { process Consumer {

int a[n];... int b[n];...
while (p < n) { while (c < n) {

< await (p == c) ; > < await (p > c) ; >

buf := a[p] b[c] := buf

p := p+1; c := c+1;

} }

} }

This type of synchronization is usually called busy waiting.

INF4140 (30.08.12) Introduction Lecture 1 33 / 34

Example (continued)

a:

buf: p: c: n:

b:

Global Invariant : c <= p <= c+1

Local Invariant (Producer) : 0 <= p <= n

An invariant holds in all states in the history of the program.

INF4140 (30.08.12) Introduction Lecture 1 34 / 34

