Locks and Barriers

INF4140

06.09.12

Lecture 2

INF4140 (06.09.12) Locks and Barriers Lecture 2 1/40

Practical Stuff

Compulsory assignment 1
@ Deadline: Friday September 28 at 18.00
@ It is possible to work in pairs
@ Online delivery (Devilry): https://devilry.ifi.uio.no/

INF4140 (06.09.12) Locks and Barriers Lecture 2 2 /40

Introduction

@ Central to the course are general mechanisms and issues related to
parallel programs

@ Previous class: await language and a simple version of the
producer/consumer example

Today
@ Entry- and exit protocols to the critical section
o Protect reading and writing to shared variables
@ Barriers

o lterative algorithms:
Processes must synchronize between each iteration
o Coordination using flags

INF4140 (06.09.12) Locks and Barriers Lecture 2 3/40

Review: await-example: Producer/Consumer

Let Producer be a process which delivers data to a Consumer process.
int buf, p := 0, ¢ := 0;

process Producer { process Consumer {
int aln];... int b[n];...
while (p < n) { while (c < n) {
< await (p ==¢) ; > < await (p > ¢) ; >
buf := alp] blc] := buf
p := ptl; c := c+l;
} }
} 3

Global Invariant: ¢ <= p <= c+1
Local Invariant (Producer): 0 <= p <= n
An invariant holds in all states in the history of the program.

INF4140 (06.09.12) Locks and Barriers Lecture 2 4 /40

Main question:

How can we implement critical sections / conditional critical sections?
@ using locks and low-level operations
@ active waiting (later semaphores and passive waiting)

@ various solutions and properties

Locks and Barriers Lecture 2

Access to Critical Section (CS)

@ Several processes compete for access to a shared resource

@ Only one process can have access at a time
@ Possible examples:

@ Execution of bank transactions
o Access to a printer

@ The solution can be used to implement await-statements

INF4140 (06.09.12) Locks and Barriers Lecture 2 6 /40

Critical section: First approach to a solution

Operations on shared variables happen inside the CS.
Access to the CS must then be protected to prevent interference.
process pli=1 to n] {
while (true) {
CSentry ;
CS;
CSexit ;
not CS
}
}

Assumption: A process which enters the CS will eventually leave it.

INF4140 (06.09.12) Locks and Barriers Lecture 2 7 /40

Naive solution

int in = 1; —lor?2

process pl {
while (true) {
while (in=2) skip;

process p2 {
while (true) {
while (in=1) skip;

CS CS
in = 2; in = 1;
not CS not CS
} }
} }

Good solution? What is good, what is not so good?
@ More than 2 processes?

o Different execution times?

INF4140 (06.09.12)

Locks and Barriers

Lecture 2

Desired Properties

Mutual Exclusion (Mutex): At any time, at most one process is inside CS.
Absence of Deadlock: If all processes are trying to enter CS, at least one
will succeed.

Absence of Unnecessary Delay: If some processes are trying to enter CS,
while the other processes are in their non-critical sections, at
least one will succeed.

Eventual Entry: A process that is attempting to enter CS will eventually
succeed.

NB: The three first are safety properties, the last a liveness property.
(SAFETY: no bad state — LIVENESS: something good will happen.)

INF4140 (06.09.12) Locks and Barriers Lecture 2 9 /40

Safety: Invariants (review)

A safety property expresses that a program does not reach a “bad” state. In

order to prove this, we can show that the program will never leave a “good”
state:

@ Show that the property holds in all initial states

@ Show that the program statements preserve the property

Such a (good) property is usually called a global invariant.

INF4140 (06.09.12) Locks and Barriers Lecture 2 10 / 40

Atomic sections

Used for synchronization of processes

@ General form:
< await(B) S; >

@ B: Synchronization condition
o Executed atomically when B is true

@ Unconditional critical section (B is true):
<S>
S executed atomically
@ Conditional synchronization:

< await(B); >

INF4140 (06.09.12) Locks and Barriers Lecture 2 11 / 40

Critical section using locks

bool lock = false;

process pli=1 to n] {
while (true) {
< await (!lock) lock = true; >
CS
lock = false;
not CS
}
}
Safety properties:

o Mutex
@ Absence of deadlock
@ Absence of unnecessary waiting
What about taking away the angle brackets <...>?

INF4140 (06.09.12) Locks and Barriers Lecture 2 12 / 40

Test & Set is a method for implementing conditional atomic action:
bool TS(lock) {
< bool initial = lock ;
lock = true;
return initial; >

}
o Effect of TS(1lock):

The variable 1ock will always have value true after TS(1lock), but
the return value will vary between true and false.

e Exists as an atomic instruction on many machines.

INF4140 (06.09.12) Locks and Barriers Lecture 2 13 / 40

Critical section using TS and Spin-lock

bool lock = false;

Spin-lock:
process pli=1 to n] { Processes use TS to
while (true) { enter the loop.
while (TS(lock)) skip;
CS Exit from loop happens when
lock = false; lock has value false
not CS before the while test.

}
}
NB: Safety: Mutex, absence of deadlock and of unnecessary delay.

INF4140 (06.09.12) Locks and Barriers Lecture 2 14 / 40

Critical section using Test, test & Set

Lock variable 1ock is continuously written to by the processes. This can be

ineffective, and a more effective solution is test, test and set:
bool lock = false;

process pli=1 to n] {
while (true) {

while (lock) skip; spin while the lock is busy
while (TS(lock)) { attempt to take the lock
while (lock) skip; } spin if it fails
(&)
lock = false;
not CS

}

}
NB: Safety: Mutex, absence of deadlock and of unnecessary delay.

INF4140 (06.09.12) Locks and Barriers Lecture 2 15 / 40

Implementing await-statements

Let CSentry and CSexit implement entry- and exit-protocols to the
critical section.
Then the statement < S;> can be implemented by

CSentry; S; CSexit;

Implementation of conditional critical section < await (B) S;>:
CSentry;
while (!B) { CSexit; CSentry; }
S;
CSexit;
The implementation can be optimized with Delay between the exit and
entry in the body of the while statement.

INF4140 (06.09.12) Locks and Barriers Lecture 2 16 / 40

What about Liveness?

So far we have not found a solution that guarantees the “Eventual Entry”
property, except the very first (which did not satisfy “Absence of
Unnecessary Delay”).

INF4140 (06.09.12) Locks and Barriers Lecture 2 17 / 40

Liveness properties

@ Liveness: Something good will happen

@ Typical example for sequential programs:
Program termination

@ Typical example for parallel programs:
A given process will eventually enter the critical section

This is affected by the scheduling strategies.

INF4140 (06.09.12) Locks and Barriers Lecture 2

Scheduling and fairness

@ Fairness: Guarantee that the processes have an opportunity to
execute.

@ Scheduling: Strategy to determine which process has an opportunity
to execute.

bool x = true;
Example:

co while (x); || x = false; oc

INF4140 (06.09.12) Locks and Barriers Lecture 2 19 / 40

Unconditional fairness

A strategy for scheduling is unconditionally fair if each unconditional
atomic action which can be chosen will eventually be chosen.

@ Example: “Round robin” execution

bool x = true;
Example:

co while (x); || x = false; oc
@ x = false is unconditional
@ Must thus eventually be chosen

@ This guarantees termination

INF4140 (06.09.12) Locks and Barriers Lecture 2 20 / 40

A scheduling strategy is weakly fair if

@ it is unconditionally fair
@ every conditional atomic action will eventually be chosen, assuming
that the condition becomes true and thereafter remains true until the

action is executed.

Example:
bool x = true, int y = O;

co while (x) y =y + 1; || < await y >= 10; > x = false; oc

@ When y >= 10 becomes true, this condition remains true
@ This ensures termination of the program

o Example: Round robin execution

INF4140 (06.09.12) Locks and Barriers Lecture 2 21/ 40

Strong fairness

A strategy for scheduling is strongly fair if
@ it is unconditionally fair
@ each conditional atomic action will eventually be chosen, assuming
that the condition is true infinitely often.

bool x = true, y = false;
Example:)
co while (x) { y = true; y = false; }
|| < await (y) x = false; > oc
With strong fairness:
The program will terminate, because y is true infinitely often.
With weak fairness:

The program need not terminate, because y is also false infinitely often.

INF4140 (06.09.12) Locks and Barriers Lecture 2 22 / 40

Fairness for critical sections using locks

The CS solutions earlier in the lecture need an assumption about strong
fairness in order to guarantee access for a given process (i):

@ Steady inflow of processes which want the lock

@ The value of lock alternates (infinitely long) between true and false

@ Weak fairness: Process i can read lock only when the value is false

@ Strong fairness: Guarantees that / eventually sees that lock is true
Difficult to make a scheduling strategy that is both practical and strongly
fair.

We will now look at CS solutions where access is guaranteed for weakly fair
strategies:

INF4140 (06.09.12) Locks and Barriers Lecture 2 23 / 40

Fair solutions to the CS problem

@ Tie-Breaker
o Ticket
@ The book also describes the bakery algorithm

INF4140 (06.09.12) Locks and Barriers Lecture 2 24 / 40

Tie-Breaker algorithm

Requires no special machine instruction (like TS)

We will look at the solution for two processes

°
°

@ Each process has a private lock

@ Each process sets its lock in the entry protocol
°

The private lock is read, but is not changed by the other process

INF4140 (06.09.12) Locks and Barriers Lecture 2 25 / 40

Tie-Breaker algorithm: Attempt 1

bool inl = false, in2 = false

process pl { process p2 {
while (true) { while (true) {
while (in2) skip; while (inl) skip;
inl = true; in2 = true;
CS CS
inl = false; in2 = false;
not CS not CS
} }
} }

Here we cannot guarantee mutex!

INF4140 (06.09.12) Locks and Barriers Lecture 2 26 / 40

Tie-Breaker algorithm: Attempt 2

Tries to reverse the order in the entry protocol:
bool inl = false, in2 = false

process pl { process p2 {
while (true) { while (true) {
inl = true; in2 = true;
while (in2) skip; while (inl) skip;
CS CS
inl = false; in2 = false;
not CS not CS
} }
} }

Here we cannot guarantee absence of deadlock!

INF4140 (06.09.12) Locks and Barriers Lecture 2 27 / 40

Tie-Breaker algorithm: Attempt 3 (with await)

Introduces the variable 1ast which tells which process last started the
entry protocol.

bool inl = false, in2 = false

int last =1

process pl { process p2 {
while (true) { while (true) {
inl = true; last = 1; in2 = true; last = 2;
< await (!'in2 or last==2);> < await (!'inl or last==1);>
CS CS
inl = false; in2 = false;
not CS not CS
} }
} }

INF4140 (06.09.12) Locks and Barriers Lecture 2

Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value
while a wait condition evaluates to true,
the wait condition will remain true.
pl sees that the wait condition is true:
@ in2 == false
@ in2 can eventually become true, but then p2 must also set last to 2
@ Then the await condition to p1 still holds

9@ last ==
@ Then last == 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

INF4140 (06.09.12) Locks and Barriers Lecture 2 29 / 40

Tie-Breaker algorithm (4): Implementation

bool inl = false, in2 = false
int last 1

process pl {
while (true) {
inl = true; last = 1;
while (in2 and last==1) skip;
CS
inl = false;
not CS
}
}

Can generalize to many processes (see book)

INF4140 (06.09.12) Locks and Barriers

Lecture 2

30 / 40

Ticket algorithm

If the Tie-Breaker algorithm is scaled up to n processes, we get a loop with
n — 1 2-process Tie-Breaker algorithms.

The ticket algorithm provides a simpler solution to the CS problem for n
processes.

@ Works like the “take a number” queue at the post office (with one

loop)
@ A customer (process) which comes in takes a number which is higher
than the number of all others who are waiting

@ The customer is served when a ticket window is available and the
customer has the lowest ticket number

INF4140 (06.09.12) Locks and Barriers Lecture 2 31/ 40

Ticket algorithm: Sketch (n processes)

int number = 1, next = 1, turn[l:nl= ([n] 0);

process pli = 1 to n] {
while (true) {
< turn[i] = number; number = number + 1; >
< await (turn[i] = next) ;>
CS
< next = next + 1; >

not CS

}
@ The first line in the loop must be performed atomically!
@ The await-statement can be implemented as its own loop (while)

@ Some machines have an instruction
FA(var, incr):<int tmp = var; var = var + incr; return tmp;>

INF4140 (06.09.12) Locks and Barriers Lecture 2 32 /40

Ticket algorithm: Implementation

int number = 1, next = 1, turn[l:nl= ([n] 0);
process pli = 1 to n] {
while (true) {
turn[i] = FA(number, 1);

while (turn[i] !'= next) skip;
CS

next = next + 1;

not CS

}

FA(var, incr):<int tmp = var; var = var + incr; return tmp;>
Without this instruction, we use an extra CS:

CSentry; turn[i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm (see book).

INF4140 (06.09.12) Locks and Barriers Lecture 2 33 /40

Ticket algorithm: Invariant

We can formulate a global invariant for processes in the ticket algorithm:
0 < next < number

For each process p[il:
e turn[i] < number
e if p[i] is in the CS then turn[i] == next.

For all processes p[il, p[j] where i !'= j:

e if turn[i] > O then turn[j] !'= turn[i].
This holds initially, and is preserved by all atomic statements.

INF4140 (06.09.12) Locks and Barriers Lecture 2 34 /40

Barrier synchronization

@ Computation of disjoint parts in parallel (e.g. array elements).

@ Processes go into a loop where each iteration is dependent on the
results of the previous.

process Worker[i=1 to n] {
while (true) {
Task i;
Wait until n-tasks are done; # Barrier
}
}

All processes must reach the barrier before any can continue.

INF4140 (06.09.12) Locks and Barriers Lecture 2 35/ 40

Shared counter

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter:
int count = 0;
process Worker[i=1 to n] {
while (true) {

Task i
< count = count + 1; >
< await (count == n); >

}
}
Can be implemented using the FA instruction.
Disadvantages:

@ count must be reset between each iteration.
@ Must be updated using atomic operations.

@ Inefficient: Many processes read and write count concurrently.

INF4140 (06.09.12) Locks and Barriers

Lecture 2

Coordination using flags

Goal: Avoid overloading of read- and write-operations on one variable.

Divides shared counter into several local variables.
Worker[i]:

arrivel[i] = 1;

< await (continue[i] == 1);>
Coordinator:

for [i=1 to n] < await (arrivel[i]l==1);>

for [i=1 to n] continuel[i] = 1;
In a loop, the flags must be cleared before the next iteration.
Flag synchronization principles:

© The process which waits for a flag is the one which will reset the flag
Q A flag will not be set before it is reset

INF4140 (06.09.12) Locks and Barriers Lecture 2 37 / 40

Synchronization using flags

int arrive[1:n] = ([n] 0), continue[1:n] = ([n] 0);

process Worker[i = 1 to n] { process Coordinator {
while(true) { while(true) {
Task i for[i = 1 to n] {
arrivel[i] = 1; <await (arrivel[i] == 1);>
<await (continue[i] == 1);> arrivel[i] = 0;
continue[i] = 0; }
} for [i = 1 to n]
} continue[i] = 1;
}
}

INF4140 (06.09.12) Locks and Barriers Lecture 2 38 / 40

Combined barriers

@ The roles of the Worker and Coordinator processes can be combined.

@ In a combining tree barrier the processes are organized in a tree
structure. The processes signal arrive upwards in the tree and continue
downwards in the tree.

INF4140 (06.09.12) Locks and Barriers Lecture 2 39 / 40

Implementation of Critical Sections

bool lock = false;

Entry: <await ('lock) lock = true>
Critical section

Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip
Drawbacks:

@ Busy waiting protocols are often complicated
o Inefficient if there are fever processors than processes
@ Should not waste time executing a skip loop

@ No clear distinction between variables used for synchronization and
computation

Desirable to have a special tools for synchronization protocols:
semaphores (next lecture)

INF4140 (06.09.12) Locks and Barriers Lecture 2 40 / 40

