
Locks and Barriers

INF4140

06.09.12

Lecture 2

INF4140 (06.09.12) Locks and Barriers Lecture 2 1 / 40

Practical Stuff

Compulsory assignment 1

Deadline: Friday September 28 at 18.00

It is possible to work in pairs

Online delivery (Devilry): https://devilry.ifi.uio.no/

INF4140 (06.09.12) Locks and Barriers Lecture 2 2 / 40

Introduction

Central to the course are general mechanisms and issues related to
parallel programs

Previous class: await language and a simple version of the
producer/consumer example

Today

Entry- and exit protocols to the critical section

Protect reading and writing to shared variables

Barriers

Iterative algorithms:

Processes must synchronize between each iteration

Coordination using flags

INF4140 (06.09.12) Locks and Barriers Lecture 2 3 / 40

Review: await-example: Producer/Consumer

Let Producer be a process which delivers data to a Consumer process.
int buf, p := 0, c := 0;

process Producer { process Consumer {

int a[n];... int b[n];...
while (p < n) { while (c < n) {

< await (p == c) ; > < await (p > c) ; >

buf := a[p] b[c] := buf

p := p+1; c := c+1;

} }

} }

Global Invariant : c <= p <= c+1

Local Invariant (Producer) : 0 <= p <= n

An invariant holds in all states in the history of the program.

INF4140 (06.09.12) Locks and Barriers Lecture 2 4 / 40

Main question:

How can we implement critical sections / conditional critical sections?

using locks and low-level operations

active waiting (later semaphores and passive waiting)

various solutions and properties

INF4140 (06.09.12) Locks and Barriers Lecture 2 5 / 40

Access to Critical Section (CS)

Several processes compete for access to a shared resource

Only one process can have access at a time

Possible examples:

Execution of bank transactions

Access to a printer

The solution can be used to implement await-statements

INF4140 (06.09.12) Locks and Barriers Lecture 2 6 / 40

Critical section: First approach to a solution

Operations on shared variables happen inside the CS.
Access to the CS must then be protected to prevent interference.
process p[i=1 to n] {

while (true) {

CSentry ;
CS;
CSexit ;
not CS

}

}

Assumption: A process which enters the CS will eventually leave it.

INF4140 (06.09.12) Locks and Barriers Lecture 2 7 / 40

Naive solution

int in = 1; — 1 or 2

process p1 { process p2 {

while (true) { while (true) {

while (in=2) skip; while (in=1) skip;

CS CS
in = 2; in = 1;

not CS not CS
} }

} }

Good solution? What is good, what is not so good?

More than 2 processes?

Different execution times?

INF4140 (06.09.12) Locks and Barriers Lecture 2 8 / 40

Desired Properties

Mutual Exclusion (Mutex): At any time, at most one process is inside CS.

Absence of Deadlock: If all processes are trying to enter CS, at least one
will succeed.

Absence of Unnecessary Delay: If some processes are trying to enter CS,
while the other processes are in their non-critical sections, at
least one will succeed.

Eventual Entry: A process that is attempting to enter CS will eventually
succeed.

NB: The three first are safety properties, the last a liveness property.
(SAFETY: no bad state – LIVENESS: something good will happen.)

INF4140 (06.09.12) Locks and Barriers Lecture 2 9 / 40

Safety: Invariants (review)

A safety property expresses that a program does not reach a “bad” state. In
order to prove this, we can show that the program will never leave a “good”
state:

Show that the property holds in all initial states

Show that the program statements preserve the property

Such a (good) property is usually called a global invariant.

INF4140 (06.09.12) Locks and Barriers Lecture 2 10 / 40

Atomic sections

Used for synchronization of processes

General form:
< await(B) S;>

B: Synchronization condition

Executed atomically when B is true

Unconditional critical section (B is true):

< S;>

S executed atomically

Conditional synchronization:

< await(B);>

INF4140 (06.09.12) Locks and Barriers Lecture 2 11 / 40

Critical section using locks

bool lock = false;

process p[i=1 to n] {

while (true) {

< await (!lock) lock = true; >

CS
lock = false;

not CS
}

}

Safety properties:

Mutex

Absence of deadlock

Absence of unnecessary waiting

What about taking away the angle brackets <...>?

INF4140 (06.09.12) Locks and Barriers Lecture 2 12 / 40

“Test & Set”

Test & Set is a method for implementing conditional atomic action:
bool TS(lock) {

< bool initial = lock ;

lock = true;

return initial; >

}

• Effect of TS(lock):

The variable lock will always have value true after TS(lock), but
the return value will vary between true and false.

• Exists as an atomic instruction on many machines.

INF4140 (06.09.12) Locks and Barriers Lecture 2 13 / 40

Critical section using TS and Spin-lock

bool lock = false;

Spin-lock:

process p[i=1 to n] { Processes use TS to
while (true) { enter the loop.

while (TS(lock)) skip;

CS Exit from loop happens when
lock = false; lock has value false

not CS before the while test.
}

}

NB: Safety: Mutex, absence of deadlock and of unnecessary delay.

INF4140 (06.09.12) Locks and Barriers Lecture 2 14 / 40

Critical section using Test, test & Set

Lock variable lock is continuously written to by the processes. This can be
ineffective, and a more effective solution is test, test and set:
bool lock = false;

process p[i=1 to n] {

while (true) {

while (lock) skip; spin while the lock is busy
while (TS(lock)) { attempt to take the lock

while (lock) skip; } spin if it fails
CS
lock = false;

not CS
}

}

NB: Safety: Mutex, absence of deadlock and of unnecessary delay.

INF4140 (06.09.12) Locks and Barriers Lecture 2 15 / 40

Implementing await-statements

Let CSentry and CSexit implement entry- and exit-protocols to the
critical section.
Then the statement < S;> can be implemented by

CSentry; S; CSexit;

Implementation of conditional critical section < await (B) S;> :
CSentry;

while (!B) { CSexit; CSentry; }

S;

CSexit;

The implementation can be optimized with Delay between the exit and
entry in the body of the while statement.

INF4140 (06.09.12) Locks and Barriers Lecture 2 16 / 40

What about Liveness?

So far we have not found a solution that guarantees the “Eventual Entry”
property, except the very first (which did not satisfy “Absence of
Unnecessary Delay”).

INF4140 (06.09.12) Locks and Barriers Lecture 2 17 / 40

Liveness properties

Liveness: Something good will happen

Typical example for sequential programs:
Program termination

Typical example for parallel programs:
A given process will eventually enter the critical section

This is affected by the scheduling strategies.

INF4140 (06.09.12) Locks and Barriers Lecture 2 18 / 40

Scheduling and fairness

Fairness: Guarantee that the processes have an opportunity to
execute.

Scheduling: Strategy to determine which process has an opportunity
to execute.

Example:
bool x = true;

co while (x); || x = false; oc

INF4140 (06.09.12) Locks and Barriers Lecture 2 19 / 40

Unconditional fairness

A strategy for scheduling is unconditionally fair if each unconditional
atomic action which can be chosen will eventually be chosen.

Example: “Round robin” execution

Example:
bool x = true;

co while (x); || x = false; oc

x = false is unconditional

Must thus eventually be chosen

This guarantees termination

INF4140 (06.09.12) Locks and Barriers Lecture 2 20 / 40

Weak fairness

A scheduling strategy is weakly fair if

it is unconditionally fair

every conditional atomic action will eventually be chosen, assuming
that the condition becomes true and thereafter remains true until the
action is executed.

Example:

bool x = true, int y = 0;

co while (x) y = y + 1; || < await y >= 10; > x = false; oc

When y >= 10 becomes true, this condition remains true

This ensures termination of the program

Example: Round robin execution

INF4140 (06.09.12) Locks and Barriers Lecture 2 21 / 40

Strong fairness

A strategy for scheduling is strongly fair if

it is unconditionally fair

each conditional atomic action will eventually be chosen, assuming
that the condition is true infinitely often.

Example:

bool x = true, y = false;

co while (x) { y = true; y = false; }

|| < await (y) x = false; > oc

With strong fairness:
The program will terminate, because y is true infinitely often.
With weak fairness:
The program need not terminate, because y is also false infinitely often.

INF4140 (06.09.12) Locks and Barriers Lecture 2 22 / 40

Fairness for critical sections using locks

The CS solutions earlier in the lecture need an assumption about strong
fairness in order to guarantee access for a given process (i):

Steady inflow of processes which want the lock

The value of lock alternates (infinitely long) between true and false

Weak fairness: Process i can read lock only when the value is false

Strong fairness: Guarantees that i eventually sees that lock is true

Difficult to make a scheduling strategy that is both practical and strongly
fair.
We will now look at CS solutions where access is guaranteed for weakly fair
strategies:

INF4140 (06.09.12) Locks and Barriers Lecture 2 23 / 40

Fair solutions to the CS problem

Tie-Breaker

Ticket

The book also describes the bakery algorithm

INF4140 (06.09.12) Locks and Barriers Lecture 2 24 / 40

Tie-Breaker algorithm

Requires no special machine instruction (like TS)

We will look at the solution for two processes

Each process has a private lock

Each process sets its lock in the entry protocol

The private lock is read, but is not changed by the other process

INF4140 (06.09.12) Locks and Barriers Lecture 2 25 / 40

Tie-Breaker algorithm: Attempt 1

bool in1 = false, in2 = false

process p1 { process p2 {

while (true) { while (true) {

while (in2) skip; while (in1) skip;

in1 = true; in2 = true;

CS CS
in1 = false; in2 = false;

not CS not CS
} }

} }

Here we cannot guarantee mutex !

INF4140 (06.09.12) Locks and Barriers Lecture 2 26 / 40

Tie-Breaker algorithm: Attempt 2

Tries to reverse the order in the entry protocol:
bool in1 = false, in2 = false

process p1 { process p2 {

while (true) { while (true) {

in1 = true; in2 = true;

while (in2) skip; while (in1) skip;

CS CS
in1 = false; in2 = false;

not CS not CS
} }

} }

Here we cannot guarantee absence of deadlock !

INF4140 (06.09.12) Locks and Barriers Lecture 2 27 / 40

Tie-Breaker algorithm: Attempt 3 (with await)

Introduces the variable last which tells which process last started the
entry protocol.
bool in1 = false, in2 = false

int last = 1

process p1 {

while (true) {

in1 = true; last = 1;

< await (!in2 or last==2);>

CS

in1 = false;

not CS

}

}

process p2 {

while (true) {

in2 = true; last = 2;

< await (!in1 or last==1);>

CS

in2 = false;

not CS

}

}

INF4140 (06.09.12) Locks and Barriers Lecture 2 28 / 40

Tie-Breaker algorithm

Even if the variables in1, in2 and last can change the value
while a wait condition evaluates to true,
the wait condition will remain true.
p1 sees that the wait condition is true:

in2 == false

in2 can eventually become true, but then p2 must also set last to 2

Then the await condition to p1 still holds

last == 2

Then last == 2 will hold until p1 has executed

Thus we can replace the await-statement with a while-loop.

INF4140 (06.09.12) Locks and Barriers Lecture 2 29 / 40

Tie-Breaker algorithm (4): Implementation

bool in1 = false, in2 = false

int last = 1

process p1 {

while (true) {

in1 = true; last = 1;

while (in2 and last==1) skip;

CS
in1 = false;

not CS
}

}

Can generalize to many processes (see book)

INF4140 (06.09.12) Locks and Barriers Lecture 2 30 / 40

Ticket algorithm

If the Tie-Breaker algorithm is scaled up to n processes, we get a loop with
n − 1 2-process Tie-Breaker algorithms.
The ticket algorithm provides a simpler solution to the CS problem for n
processes.

Works like the “take a number” queue at the post office (with one
loop)

A customer (process) which comes in takes a number which is higher
than the number of all others who are waiting

The customer is served when a ticket window is available and the
customer has the lowest ticket number

INF4140 (06.09.12) Locks and Barriers Lecture 2 31 / 40

Ticket algorithm: Sketch (n processes)

int number = 1, next = 1, turn[1:n]= ([n] 0);

process p[i = 1 to n] {

while (true) {

< turn[i] = number; number = number + 1; >

< await (turn[i] = next);>

CS
< next = next + 1; >

not CS
}

}

The first line in the loop must be performed atomically!

The await-statement can be implemented as its own loop (while)

Some machines have an instruction
FA(var, incr):<int tmp = var; var = var + incr; return tmp;>

INF4140 (06.09.12) Locks and Barriers Lecture 2 32 / 40

Ticket algorithm: Implementation

int number = 1, next = 1, turn[1:n]= ([n] 0);

process p[i = 1 to n] {

while (true) {

turn[i] = FA(number, 1);

while (turn[i] != next) skip;

CS
next = next + 1;

not CS
}

}

FA(var, incr):<int tmp = var; var = var + incr; return tmp;>

Without this instruction, we use an extra CS:

CSentry; turn[i]=number; number = number + 1; CSexit;

Problem with fairness for CS. Solved with the bakery algorithm (see book).

INF4140 (06.09.12) Locks and Barriers Lecture 2 33 / 40

Ticket algorithm: Invariant

We can formulate a global invariant for processes in the ticket algorithm:
0 < next ≤ number

For each process p[i]:
• turn[i] < number

• if p[i] is in the CS then turn[i] == next.

For all processes p[i], p[j] where i != j:
• if turn[i] > 0 then turn[j] != turn[i].

This holds initially, and is preserved by all atomic statements.

INF4140 (06.09.12) Locks and Barriers Lecture 2 34 / 40

Barrier synchronization

Computation of disjoint parts in parallel (e.g. array elements).

Processes go into a loop where each iteration is dependent on the
results of the previous.

process Worker[i=1 to n] {

while (true) {

Task i;
Wait until n-tasks are done; # Barrier

}

}

All processes must reach the barrier before any can continue.

INF4140 (06.09.12) Locks and Barriers Lecture 2 35 / 40

Shared counter

A number of processes will synchronize the end of their tasks.
Synchronization can be implemented with a shared counter :
int count = 0;

process Worker[i=1 to n] {

while (true) {

Task i
< count = count + 1; >

< await (count == n); >

}

}

Can be implemented using the FA instruction.
Disadvantages:

count must be reset between each iteration.

Must be updated using atomic operations.

Inefficient: Many processes read and write count concurrently.

INF4140 (06.09.12) Locks and Barriers Lecture 2 36 / 40

Coordination using flags

Goal: Avoid overloading of read- and write-operations on one variable.
Divides shared counter into several local variables.
Worker[i]:

arrive[i] = 1;

< await (continue[i] == 1);>

Coordinator:

for [i=1 to n] < await (arrive[i]==1);>

for [i=1 to n] continue[i] = 1;

In a loop, the flags must be cleared before the next iteration.
Flag synchronization principles:

1 The process which waits for a flag is the one which will reset the flag

2 A flag will not be set before it is reset

INF4140 (06.09.12) Locks and Barriers Lecture 2 37 / 40

Synchronization using flags

int arrive[1:n] = ([n] 0), continue[1:n] = ([n] 0);

process Worker[i = 1 to n] { process Coordinator {

while(true) { while(true) {

Task i ; for[i = 1 to n] {

arrive[i] = 1; <await (arrive[i] == 1);>

<await (continue[i] == 1);> arrive[i] = 0;

continue[i] = 0; }

} for [i = 1 to n]

} continue[i] = 1;

}

}

INF4140 (06.09.12) Locks and Barriers Lecture 2 38 / 40

Combined barriers

The roles of the Worker and Coordinator processes can be combined.

In a combining tree barrier the processes are organized in a tree
structure. The processes signal arrive upwards in the tree and continue
downwards in the tree.

INF4140 (06.09.12) Locks and Barriers Lecture 2 39 / 40

Implementation of Critical Sections

bool lock = false;

Entry: <await (!lock) lock = true>

Critical section
Exit: <lock = false;>

Spin lock implementation of entry: while (TS(lock)) skip

Drawbacks:

Busy waiting protocols are often complicated

Inefficient if there are fever processors than processes

Should not waste time executing a skip loop

No clear distinction between variables used for synchronization and
computation

Desirable to have a special tools for synchronization protocols:
semaphores (next lecture)

INF4140 (06.09.12) Locks and Barriers Lecture 2 40 / 40

