
Semaphores

INF4140

13.09.12

Lecture 3

0Book: Andrews - ch.04 (4.1 - 4.4)
INF4140 (13.09.12) Semaphores Lecture 3 1 / 34

Overview

Last lecture: Locks and Barriers (complex techniques)

No clear difference between variables for synchronization
and variables for compute results.
Busy waiting.

This lecture: Semaphores (synchronization tool)

Used easely for mutual exclusion and condition synchronization.
A way to implement signaling and (scheduling).
Can be implemented in many ways.

INF4140 (13.09.12) Semaphores Lecture 3 2 / 34

Outline

Semaphores: Syntax and Semantics.

Synchronization examples:

Mutual exclusion (Critical Section).
Barriers (signaling events).
Producers and consumers (split binary semaphores).
Bounded buffer (resource counting).
Dining philosophers (mutual exclusion - deadlock).
Reads and writers (condition synchronization - passing the baton).

INF4140 (13.09.12) Semaphores Lecture 3 3 / 34

Semaphores

Introduced by Dijkstra in 1968

Originates from railroad traffic synchronization

Railroad semaphores indicates whether the track ahead is clear or
occupied by another train

Clear Occupied

INF4140 (13.09.12) Semaphores Lecture 3 4 / 34

Properties

Semaphores in concurrent programs work in a similar way

Used to implement mutex and condition synchronization

Included in most standard libraries for concurrent programming

INF4140 (13.09.12) Semaphores Lecture 3 5 / 34

Concept

A semaphore is special kind of shared program variable

The value of a semaphore is a non-negative integer

Can only be manipulated by the following two atomic operations:
P: (Passeren) Wait for signal - want to pass

effect: wait until the value is greater than zero, and decrease the value
by one

V: (Vrijgeven)Signal an event - release

effect: increase the value by one

Pass Release

INF4140 (13.09.12) Semaphores Lecture 3 6 / 34

Syntax and Semantics

A semaphore is declared by either:

sem s; default initial value is zero
sem s = 1;
sem s[4] = ([4] 1);

The P operation

syntax: P(s)
implementation (semantics): < await (s > 0) s = s - 1; >

The V operation

syntax: V(s)
implementation(semantics): < s = s + 1; >

Important: No direct access to the value of a semaphore.
For instance a test like if (s==1) {...} is not allowed!

INF4140 (13.09.12) Semaphores Lecture 3 7 / 34

Kinds of semaphores

Kinds of semaphores

General semaphore: possible values - all non-negative integers
Binary semaphore: possible values - 0 and 1

Fairness: as for await-statements. In most languages processes
delayed while executing P-operations are awaken in the order they
where delayed

INF4140 (13.09.12) Semaphores Lecture 3 8 / 34

Example: Mutual Exclusion (Critical Section)

Mutex implemented by a binary semaphore

sem mutex = 1;

process CS[i = 1 to n] {
while (true) {

P(mutex);

critical section
V(mutex);

noncritical section
}

}

Note:

The semaphore is initially 1 and

Always P before V → Binary semaphore

INF4140 (13.09.12) Semaphores Lecture 3 9 / 34

Example: Barrier synchronization

Semaphores may be used for signaling events

sem arrive1 = 0, arrive2 = 0;

process Worker1 {
. . .

V(arrive1); reach the barrier
P(arrive2); wait for other processes

. . .
}
process Worker2 {

. . .
V(arrive2); reach the barrier
P(arrive1); wait for other processes

. . .
}

Note:

Semaphores are usually initialized to 0 and

Signal with a V and then wait with a P

INF4140 (13.09.12) Semaphores Lecture 3 10 / 34

Split binary semaphores

A set of semaphores may form a split binary semaphore if the sum of all
semaphores never exceeds 1. Split binary semaphores can be used as
follows to implement mutex.

Consider a program with more than one binary semaphore

Let one of these semaphores be initialized to 1
and the others to 0

Let all processes call P on a semaphore,
before calling V on (another) semaphore

Then the code between the P and the V call
will be executed in mutex.
All semaphores will have the value 0.

INF4140 (13.09.12) Semaphores Lecture 3 11 / 34

Example: Producer/consumer with split binary semaphores

typeT buf; /* Buffer of some type T */
sem empty = 1, full = 0;

process Producer{
while (true){

. . .
P(empty);

buf = data;

V(full);

}
}

process Consumer{
while (true){

P(full);

result = buf;

V(empty);

. . .
}

}

Note:

empty and full are both binary semaphores, together they form a split binary
semaphore.

This solution works if there are several producers/consumers, but buffer capacity
might be a problem

INF4140 (13.09.12) Semaphores Lecture 3 12 / 34

Increasing buffer capacity

Previews example: the producer must wait for the consumer to empty
the buffer before it can produce a new entry.

It is a relatively simple task to generalize to a buffer of size n.

We will use:

A ring-buffer represented by an array, and two integers rear and
front.
General semaphores to keep track of the number of free slots

front rear

Data

INF4140 (13.09.12) Semaphores Lecture 3 13 / 34

Example: Producer/consumer
with increased buffer capacity

typeT buf[n]; /* Array av en type T */
int front = 0, rear = 0;

sem empty = n, full = 0;

process Producer{
while (true){

. . .
P(empty);

buf[rear] = data;

rear = rear + 1 % n;

V(full);

}
}

process Consumer{
while (true){

P(full);

result = buf[front];

front = front + 1 % n;

V(empty);

. . .
}

}

What if there are several producers or consumers?

INF4140 (13.09.12) Semaphores Lecture 3 14 / 34

Increasing the number of processes

Let us consider a situation with
several producers and consumers.

New synchronization problems:

Avoid that two producers deposits to buf[rear] before rear is
updated
Avoid that two consumers fetches from buf[front] before front is
updated.

Solutions

Introduce a binary semaphore mutexDeposit to deny two producers to
deposit to the buffer at the same time.
Introduce a binary semaphore mutexFetch to deny two consumers to
fetch from the buffer at the same time.

INF4140 (13.09.12) Semaphores Lecture 3 15 / 34

Example: Producer/consumer with several processes

typeT buf[T]; int front = 0, rear = 0;

sem empty = n, full = 0, mutexDeposit = 1, mutexFetch = 1;

process Producer[i = 1 to M]{
while (true){

. . .
P(empty);

P(mutexDeposit);

buf[rear] = data;

rear = rear + 1 % n;

V(mutexDeposit);

V(full);

}
}

process Consumer[i = 1 to N]{
while (true){

. . .
P(full);

P(mutexFetch);

result = buf[front];

front = front + 1 % n;

V(mutexFetch);

V(empty);

}
}

INF4140 (13.09.12) Semaphores Lecture 3 16 / 34

Problem: Dining philosophers introduction

Five philosophers sit around a circular table.

One fork is placed between each pair of philosophers

The philosophers alternates between thinking and eating

A philosopher need two forks to eat.

1image from wikipedia.org
INF4140 (13.09.12) Semaphores Lecture 3 17 / 34

Example: Dining philosophers

A sketch of the program may look like this:

process Philosopher [i = 0 to 4] {
while (true){

think;

acquire forks;

eat;

release forks;

}
}

We have to program the actions acquire forks and release forks

INF4140 (13.09.12) Semaphores Lecture 3 18 / 34

Example: Dining philosophers 1st attempt

Let the forks be
semaphores

Let the philosophers pick
up the left fork first

sem fork[5] = ([5] 1)

process Philosopher [i = 0 to 4] {
while (true) {

think;
P(fork[i]); P(fork[(i+1)%5]);

eat;
V(fork[i]; V(fork[(i+1)%5]);

}
}

P0

P1

P2

P3

P4

F0

F1

F2

F3

F4

Deadlock?

INF4140 (13.09.12) Semaphores Lecture 3 19 / 34

Example: Dining philosophers 2nd attempt

To avoid deadlock, let Philosopher4 grab the right fork first.

sem fork[5] = ([5] 1)

process Philosopher [i = 0 to 3] {
while (true) {

think;
P(fork[i]); P(fork[i+1]);

eat;
V(fork[i]; V(fork[i+1]);

}
}

process Philosopher4 {
while (true) {

think;
P(fork[0]); P(fork[4]);

eat;
V(fork[0]; V(fork[4]);

}
}

INF4140 (13.09.12) Semaphores Lecture 3 20 / 34

Example: Readers/Writers overview

Classical synchronization problem

Reader and writer processes share a database

Readers: reads from the database

Writers: reads and updates the database

Writers need mutually exclusive access

When no writers have access, many readers may access the database

INF4140 (13.09.12) Semaphores Lecture 3 21 / 34

Example: Readers/Writers approaches

Dining philosophers: Pair of processes competes
for access to forks

Readers/writers: Different classes of processes competes for access to
the database

Readers compete with writers
Writers compete both with readers and other writers

General synchronization problem:

Readers: must wait until no writers are active in DB
Writers: must wait until no readers or writers are active in DB

We will look at two different approaches:

Mutex: easy to implement, but unfair
Condition Synchronization:

Using a split binary semaphore
Easy to adapt to different scheduling strategies

INF4140 (13.09.12) Semaphores Lecture 3 22 / 34

Example: Readers/Writers with Mutex (1)

sem rw = 1;

process Reader [i = 1 to M] {
while (true) {

...

P(rw);

Read from DB
V(rw);

}
}

process Writer [i = 1 to N] {
while (true) {

...

P(rw);

Write to DB
V(rw);

}
}

But: We want more than one reader simultaneously

INF4140 (13.09.12) Semaphores Lecture 3 23 / 34

Example: Readers/Writers with Mutex (2)

Give access to more than one reader

int nr = 0; # number of active readers

sem rw = 1; # lock for reader/writer exclusion

process Reader [i = 1 to M] {
while (true) {

...

< nr = nr + 1;

if (nr == 1) P(rw); >

Read from DB
< nr = nr - 1;

if (nr == 0) V(rw); >

}
}

process Writer [i = 1 to N] {
while (true) {

...

P(rw);

Write to DB
V(rw);

}
}

We have to make the entry and exit of the CS atomic

INF4140 (13.09.12) Semaphores Lecture 3 24 / 34

Example: Readers/Writers with Mutex (3)

int nr = 0; # number of active readers

sem rw = 1; # lock for reader/writer exclusion

sem mutexR = 1; # mutex for readers

process Reader [i = 1 to M] {
while (true) {

...

P(mutexR); nr = nr + 1; if (nr == 1) P(rw); V(mutexR)

Read from DB
P(mutexR); nr = nr - 1; if (nr == 0) V(rw); V(mutexR)

}
}

Fairness: What happens if we have a constant stream of readers?

INF4140 (13.09.12) Semaphores Lecture 3 25 / 34

Example: Readers/Writers
with condition synchronization - overview

The mutex solution solved two separate synchronization problems

Reader vs. writer for access to the database
Reader vs. reader for access to the counter

We shall now look at a solution based on
condition synchronization

INF4140 (13.09.12) Semaphores Lecture 3 26 / 34

Example: Readers/Writers
with condition synchronization - invariant

Let us try to find a reasonable invariant for the system.

It must state that:

When a writer access the DB, no one else can
When no writers access the DB, one or more readers may

Let us introduce two counters:

nr is the number of active readers
nw is the number of active writers

The invariant may be:
RW: (nr == 0 or nw == 0) and nw <= 1

INF4140 (13.09.12) Semaphores Lecture 3 27 / 34

Example: Readers/Writers
with condition synchronization - updating counters

We need code to update the counters

Reader: Writer:
< nr = nr + 1; > < nw = nw + 1; >

Read from DB Write to DB
< nr = nr - 1; > < nw = nw - 1; >

Put conditions in front of the atomic actions to preserve the invariant.

Before increasing nr: (nw == 0)

Before increasing nw: (nr == 0 and nw == 0)

INF4140 (13.09.12) Semaphores Lecture 3 28 / 34

Example: Readers/Writers
with condition synchronization - without semaphores

int nr = 0, nw = 0;

RW: (nr == 0 or nw == 0) and nw <= 1

process Reader [i=1 to M] {
while (true) {

...

< await (nw == 0)

nr = nr + 1; >

Read from DB
< nr = nr - 1; >

}
}

process Writer [i=1 to N] {
while (true) {

...

< await (nr == 0 and nw == 0)

nw = nw + 1; >

Write to DB
< nw = nw - 1; >

}
}

INF4140 (13.09.12) Semaphores Lecture 3 29 / 34

Example: Readers/Writers with condition synchronization
- converting to split binary semaphores

Implementation of await-statements may be done by
split binary semaphores.

May be used to implement different synchronization problems with
different guards B1, B2...

Use an entry-semaphore (e) initialized to 1

For each guard Bi : associate one counter and one delay-semaphore,
both initialized to 0

Semaphore: delay the processes waiting for Bi
Counter: count the number of processes waiting for Bi

For the readers/writers problem, we need
three semaphores and two counters:

sem e = 1;

sem r = 0; int dr = 0; # condition reader: nw == 0

sem w = 0; int dw = 0; # condition writer: nr == 0 and nw == 0

INF4140 (13.09.12) Semaphores Lecture 3 30 / 34

Example: Readers/Writers with condition synchronization
- converting to split binary semaphores (2)

e, r and w form a split binary semaphore.

All execution paths starts with a P-operation and ends with a
V-operation → Mutex

We need a signal mechanism SIGNAL to pick which semaphore to
signal.

SIGNAL must make sure the invariant holds

Bi holds when a process enters CR because either:
the process checks
the process is only signaled if Bi holds

Avoid deadlock by checking the counters before the delay semaphores
are signaled.

r is not signalled (V(r)) unless there is a delayed reader
w is not signalled (V(w)) unless there is a delayed writer

INF4140 (13.09.12) Semaphores Lecture 3 31 / 34

Example: Readers/Writers with condition synchronization
- with split binary semaphores

int nr = 0, nw = 0; int dr = 0; int dw = 0;

sem e = 1; sem r = 0; sem w = 0;

RW: (nr == 0 ∨ nw == 0) ∧ nw <= 1

process Reader [i=1 to M] { # Entry condition: nw == 0

while (true) {
...

<await (nw == 0) nr = nr + 1;>

P(e); if (nw>0) { dr=dr+1; V(e); P(r);}
nr=nr+1; SIGNAL;

Read from DB
< nr = nr - 1; >

P(e); nr=nr-1; SIGNAL;

}
}

INF4140 (13.09.12) Semaphores Lecture 3 32 / 34

Example: Readers/Writers with condition synchronization
- with split binary semaphores (2)

process Writer [i=1 to N] {
Entry condition: nw == 0 and nr == 0

while (true) {
...

<await (nr == 0 and nw == 0) nw = nw + 1; >

P(e); if (nr > 0 or nw > 0)

{ dw=dw+1; V(e); P(w);}
nw = nw + 1; SIGNAL;

Write to DB
< nw = nw - 1; >

P(e); nw = nw - 1; SIGNAL;

}
}

INF4140 (13.09.12) Semaphores Lecture 3 33 / 34

Example: Readers/Writers with condition synchronization
- with split binary semaphores (3)

SIGNAL

if (nw == 0 and dr > 0) {
dr = dr -1; V(r); # awaken reader

}
elseif (nr == 0 and nw == 0 and dw > 0) {

dw = dw -1; V(w); # awaken writer

}
else

V(e); # release entry lock

INF4140 (13.09.12) Semaphores Lecture 3 34 / 34

