
Program Analysis

INF4140

11.10.12

Lecture 6

INF4140 (11.10.12) Program Analysis Lecture 6 1 / 33

Program correctness

Is my program correct?
Central question for this and the next lecture.

Does the program behave as intended?

Surprising behavior?

x = 5; {x == 5} < x = x + 1;> {x ==?}

Know that x == 5 immediately after first assignment

Will this still hold when the second assignment is executed?

Depends on other processes

What will be the final value of x?

Today: Basic machinery for program reasoning
Next week: Extending this machinery to the concurrent setting

INF4140 (11.10.12) Program Analysis Lecture 6 2 / 33

Concurrent executions

Concurrent program: Several threads operating on shared variables

Parallel updates to x and y :

co < x = x ∗ 3;> || < y = y ∗ 2;> oc

Every concurrent execution can be written as a sequence of atomic
operations (gives one history)

Two possible histories for the above program

Generally, if n processes executes m atomic operations each:

(n ∗ m)!

m!n
If n=3 and m=4:

(3 ∗ 4)!

4!3
= 34650

INF4140 (11.10.12) Program Analysis Lecture 6 3 / 33

How to verify program properties?

Testing or Debugging increases confidence in the program correctness,
but does not guarantee correctness

Program testing can be a effective way to show the presence of bugs,
but not their absence

Operational reasoning (exhaustive case analysis) tries all possible
executions of a program

Formal analysis (assertional reasoning) allows to deduce the
correctness of a program without executing it

Specification of program behavior
Formal argument that the specification is correct

INF4140 (11.10.12) Program Analysis Lecture 6 4 / 33

States

A state of a program consists of the values of the program variables at
a point in time, example: {x == 2 ∧ y == 3}

The state space of a program is given by the different values that the
declared variables can take

Sequential program: one execution thread operates on its own state
space

The state may be changed by assignments

Example

{x == 5∧y == 5}x = x ∗ 2;{x == 10∧y == 5}y = y ∗ 2;{x == 10∧y == 10}

INF4140 (11.10.12) Program Analysis Lecture 6 5 / 33

Executions

Given the program S : S1;S2; . . . ;Sn;, starting in a state p0:

•
p0

−→ S1

p1

−→ S2

p2

−→
. . .

pn−1

−→ Sn
pn

−→•

where p1, p2, . . . pn are the different states during execution

Can be documented by: {p0}S1{p1}S2{p2} . . . {pn−1}Sn{pn}

p0, pn gives an external specification of the program: {p0}S{pn}

We often refer to p0 as the initial state and pn as the final state

Example (from previous slide)

{x == 5 ∧ y == 5} x = x ∗ 2; y = y ∗ 2; {x == 10 ∧ y == 10}

INF4140 (11.10.12) Program Analysis Lecture 6 6 / 33

Assertions

Want to express more general properties of programs, like

{x == y}x = x ∗ 2;y = y ∗ 2;{x == y}

If the assertion x == y holds when the program starts, x == y will
also hold when the program terminates

Does not talk about particular values of x and y , but about relations

between their values

Assertions characterise sets of states

Example

The assertion x == y describes all states where the values of x and y are
equal, like {x == −1 ∧ y == −1}, {x == 1 ∧ y == 1}, . . .

INF4140 (11.10.12) Program Analysis Lecture 6 7 / 33

Assertions

An assertion P can be viewed as a set of states where P is true:

x == y : All states where x has the same value as y

x ≤ y : All states where the value of x is less or equal to the value of y

x == 2 ∧ y == 3: Only one state (if x and y are the only variables)
true: All states
false: No state

Example

{x == y}x = x ∗ 2;{x == 2 ∗ y}y = y ∗ 2;{x == y}

Then this must also hold for particular values of x and y satisfying the
initial assertion, like x == y == 5

INF4140 (11.10.12) Program Analysis Lecture 6 8 / 33

Formal analysis of programs

Establish program properties by means of a system for formal
reasoning

Help in understanding how a program behaves

Useful for program construction

Look at logics for formal analysis

Formal system

Axioms: Defines the meaning of individual program statements

Rules: Derive the meaning of a program from the individual
statements in the program

INF4140 (11.10.12) Program Analysis Lecture 6 9 / 33

Logic and Formal Systems

Our formal system consists of:

A set of symbols (constants, variables,...)

A set of formulas (meaningful combination of symbols)

A set of axioms (assumed to be true)

A set of inference rules of the form:

H1 H2 . . . Hn

C

Where each Hi is an assumption, and C is the conclusion

The conclusion is true if all the assumptions are true

The inference rules specify how to derive additional true formulas from
axioms and other true formulas.

INF4140 (11.10.12) Program Analysis Lecture 6 10 / 33

Symbols

Program variables: x , y , z , ...

Relation symbols: ≤,≥, . . .

Function symbols: +,−, . . ., and constants 0, 1, 2, . . . , true, false

Equality: ==

INF4140 (11.10.12) Program Analysis Lecture 6 11 / 33

Formulas in First-order logic

Meaningful combination of symbols

Assume that A and B are formulas, then the following are also formulas:

¬A means “not A”
A ∨ B means “A or B”
A ∧ B means “A and B”

A ⇒ B means “A implies B”

If x is a variable and A is a formula containing x , the following are formulas:

∀x : A(x) means “A is true for all values of x”
∃x : A(x) means “there is (at least) one value of x such that A is true”

INF4140 (11.10.12) Program Analysis Lecture 6 12 / 33

Examples of axioms and rules

Typical axioms:

A ∨ ¬A

A ⇒ A

Typical rules:

A B

A ∧ B

A A ⇒ B

B

A

A ∨ B

Example

x == 5 y == 5

x == 5 ∧ y == 5

x ≥ 0 x ≥ 0 ⇒ y ≥ 0

y ≥ 0

x == 5

x == 5 ∨ y == 5

INF4140 (11.10.12) Program Analysis Lecture 6 13 / 33

Important terms

Interpretation: describe each formula as either true or false

Proof: derivation where all leaf nodes are axioms

Theorems: all lines in a proof

Soundness (of the logic): If we can prove some formula P (in the
logic) then P is true

Completeness: If a formula P is true, it can be proved

INF4140 (11.10.12) Program Analysis Lecture 6 14 / 33

Program Logic (PL)

PL lets us express and prove properties about programs

Formulas are of the form

{P} S {Q}

S : program statement(s)
P and Q: assertions over program states (including ¬,∧,∨, ∃, ∀)
P : Precondition
Q: Postcondition

Example

{x == y} x = x ∗ 2;y = y ∗ 2; {x == y}

INF4140 (11.10.12) Program Analysis Lecture 6 15 / 33

The proof system PL (Hoare logic)

Express and prove program properties

{P} S {Q}

P ,Q may be seen as a specification of the program S

Code analysis by proving the specification (in PL)
No need to execute the code in order to do the analysis
An interpretation maps triples to true or false

{x == 0} x = x + 1; {x == 1} should be true

{x == 0} x = x + 1; {x == 0} should be false

INF4140 (11.10.12) Program Analysis Lecture 6 16 / 33

Reasoning about programs

Basic idea: Specify what the program is supposed to do (pre- and
postconditions)

Pre- and postconditions are given as assertions over the program state

Use PL to find a mathematical argument that the program satisfies its
specification

INF4140 (11.10.12) Program Analysis Lecture 6 17 / 33

Interpretation

Interpretation of triples is related to code execution

{P} S {Q} is true if
• the initial state of S satisfies P

• S terminates
then Q is true in the final state of S

Expresses partial correctness (termination of S is assumed)

Example

{x == y} x = x ∗ 2;y = y ∗ 2; {x == y} is true

if the initial state satisfies x == y and the execution terminates,
then the final state will satisfy x == y

INF4140 (11.10.12) Program Analysis Lecture 6 18 / 33

Examples

Some true formulas:

{x == 0} x = x + 1; {x == 1}
{x == 4} x = 5; {x == 5}
{true} x = 5; {x == 5}

{y == 4} x = 5; {y == 4}
{x == 4} x = x + 1; {x == 5}

{x == a ∧ y == b} x = x + y ; {x == a + b ∧ y == b}
{x == 4 ∧ y == 7} x = x + 1; {x == 5 ∧ y == 7}

{x == y} x = x + 1; y = y + 1; {x == y}

Some formulas that are not true:

{x == 0} x = x + 1; {x == 0}
{x == 4} x = 5; {x == 4}

{x == y} x = x + 1; y = y − 1; {x == y}
{x > y} x = x + 1; y = y + 1; {x < y}

INF4140 (11.10.12) Program Analysis Lecture 6 19 / 33

Partial correctness

The interpretation assumes termination of {P}S{Q}, but termination
is not proved.

The assertions (P , Q) express safety properties

The pre- and postconditions restricts possible states

The assertion true can be viewed as all states. The assertion false can be
viewed as no state. What does each of the following triple express?

{P} S ; {false} S does not terminate
{false} S ; {Q} S can not start
{P} S ; {true} does not say much...
{true} S ; {Q} Q holds after S in any case

(provided S terminates)

INF4140 (11.10.12) Program Analysis Lecture 6 20 / 33

Proof system PL

The proof system consists of axioms and rules

Axioms for basic statements:

x = e, skip,...

Rules for composed statements:

S1;S2, if, while, await, co...oc, ...

Theorems in PL

On triple form

All axioms are theorems

The conclusion of a rule is a theorem, given that all the assumptions
are theorems:

H1 H2 . . . Hn

C

INF4140 (11.10.12) Program Analysis Lecture 6 21 / 33

Soundness

If a triple {P}S{Q} is a theorem in PL, the triple is interpreted as true!

Example: we want

{x == 0}x = x+ 1{x == 1}

to be a theorem (since it was interpreted as true),

but
{x == 0}x = x+ 1{x == 0}

should not be a theorem (since it was interpreted as false)

Soundness:

If we can use PL to prove some property of a program, then this property
will hold for all executions of the program

INF4140 (11.10.12) Program Analysis Lecture 6 22 / 33

Textual substitution

Textual substitution:

Px←e means: All occurrences of x in P are replaced by expression e.

Example

(x == 1)x ←(x+1) ⇔ x + 1 == 1

(x + y == a)y ←(y+x) ⇔ x + (y + x) == a

(y == a)x ←(x+y) ⇔ y == a

Substitution propagates into formulas:

(¬A)x ←e ⇔ ¬(Ax ←e)
(A ∧ B)x ←e ⇔ Ax ←e ∧ Bx ←e

(A ∨ B)x ←e ⇔ Ax ←e ∨ Bx ←e

INF4140 (11.10.12) Program Analysis Lecture 6 23 / 33

Remark on textual substitution

Px←e

Only free occurrences of x are substituted

Variables may be bound by quantifiers (then that variable is not free)

Example

(∃y : x + y > 0)x ←1 ⇔ ∃y : 1 + y > 0
(∃x : x + y > 0)x ←1 ⇔ ∃x : x + y > 0
(∃x : x + y > 0)y ←x ⇔ ∃z : z + x > 0

Correspondingly for ∀

INF4140 (11.10.12) Program Analysis Lecture 6 24 / 33

The assignment axiom – Motivation

Given by backward construction over the assignment:

Given the postcondition to the assignment, we may derive the
precondition!

What is the precondition?

{?}x = e{x == 5}

If the assignment x = e should terminate in a state where x has the value
5, the expression e must have the value 5 before the assignment:

{e == 5} x = e {x == 5}
{(x == 5)x←e} x = e {x == 5}

INF4140 (11.10.12) Program Analysis Lecture 6 25 / 33

Axiom of assignment

Given the postcondition, we may construct the precondition:

Axiom for the assignment statement

{Px←e} x = e; {P}

If the assignment x = e should lead to a state that satisfies P , the state
before the assignment must satisfy P where x is replaced by e.

INF4140 (11.10.12) Program Analysis Lecture 6 26 / 33

Proving an assignment

In order to prove the triple {P}x = e{Q} in PL, we must show that the
precondition P implies Qx ←e

P ⇒ Qx ←e {Qx ←e}x = e{Q}

{P}x = e{Q}

The blue implication is a logical proof obligation. In this course we only
convince ourself that these are true (we do not prove them formally).

Qx ←e is the largest set of states such that the assignment is
guaranteed to terminate with Q

We must show that the set of states P is within this set

INF4140 (11.10.12) Program Analysis Lecture 6 27 / 33

Examples

true ⇒ 1 == 1
{true} x = 1; {x == 1}

x == 0 ⇒ x + 1 == 1
{x == 0} x = x + 1; {x == 1}

(x == a ∧ y == b) ⇒ x + y == a + b ∧ y == b

{x == a ∧ y == b} x = x + y ; {x == a + b ∧ y == b}

x == a ⇒ 0 ∗ y + x == a

{x == a} q = 0; {q ∗ y + x == a}

y > 0 ⇒ y ≥ 0
{y > 0} x = y ; {x ≥ 0}

INF4140 (11.10.12) Program Analysis Lecture 6 28 / 33

Axiom of skip

The skip statement does nothing

Axiom:
{P} skip; {P}

INF4140 (11.10.12) Program Analysis Lecture 6 29 / 33

PL rules

Sequential composition Consequence

{P} S1; {R} {R} S2; {Q}
{P} S1; S2; {Q}

P ′ ⇒ P {P} S ; {Q} Q ⇒ Q ′

{P ′} S {Q ′}

Conditional while loop

{P ∧ B} S ; {Q} (P ∧ ¬B) ⇒ Q

{P} if (B) S ; {Q}
{I ∧ B} S ; {I}

{I} while (B) S ; {I ∧ ¬B}

• Blue: proof obligations the while rule needs a
• for loop: exercise 2.22! loop invariant!

INF4140 (11.10.12) Program Analysis Lecture 6 30 / 33

Sequential composition and Consequence

Backward construction over assignments:

x == y ⇒ 2 ∗ x == 2 ∗ y

{x == y}x = x ∗ 2{x == 2 ∗ y} {(x == y)y ←2∗y}y = y ∗ 2{x == y}

{x == y}x = x ∗ 2; y = y ∗ 2{x == y}

Usually we don’t bother to write down the assignment axiom:

(q ∗ y) + x == a ⇒ ((q + 1) ∗ y) + x − y == a

{(q ∗ y) + x == a}x = x− y;{((q + 1) ∗ y) + x == a}

{(q ∗ y) + x == a}x = x− y; q = q+ 1{(q ∗ y) + x == a}

INF4140 (11.10.12) Program Analysis Lecture 6 31 / 33

Logical variables

Do not occur in program text

Used only in assertions

May be used to freeze initial values of variables

May then talk about these values in the postcondition

Example

{x == x0} if (x < 0) x = −x {x ≥ 0 ∧ (x == x0 ∨ x == −x0)}

where (x == x0 ∨ x == −x0) states that

the final value of x equals the initial value, or

the final value of x is the negative of the initial value

INF4140 (11.10.12) Program Analysis Lecture 6 32 / 33

Example: if statement

Verification of:

{x == x0} if (x < 0) x = −x {x ≥ 0 ∧ (x == x0 ∨ x == −x0)}

{P ∧ B} S {Q} (P ∧ ¬B) ⇒ Q

{P} if (B) S {Q}

{P ∧ B}S{Q}:
{x == x0 ∧ x < 0}x = −x{x ≥ 0 ∧ (x == x0 ∨ x == −x0)}
Backward construction (assignment axiom) gives the implication:

x == x0 ∧ x < 0 ⇒ (−x ≥ 0 ∧ (−x == x0 ∨ −x == −x0))

P ∧ ¬B ⇒ Q:
x == x0 ∧ x ≥ 0 ⇒ (x ≥ 0 ∧ (x == x0 ∨ x == −x0))

INF4140 (11.10.12) Program Analysis Lecture 6 33 / 33

