
Program Analysis

INF4140

18.10.12

Lecture 7

INF4140 (18.10.12) Program Analysis Lecture 7 1 / 31

Program Logic (PL)

PL lets us express and prove properties about programs

Formulas are on the form

{P} S {Q}

S : program statement(s)
P and Q: assertions over program states
P : Precondition
Q: Postcondition

If we can use PL to prove some property of a program, then this property
will hold for all executions of the program

INF4140 (18.10.12) Program Analysis Lecture 7 2 / 31

PL rules from last week

Sequential composition Consequence

{P} S1; {R} {R} S2; {Q}
{P} S1; S2; {Q}

P ′ ⇒ P {P} S ; {Q} Q ⇒ Q ′

{P ′} S {Q ′}

Conditional while loop

{P ∧ B} S ; {Q} (P ∧ ¬B) ⇒ Q

{P} if (B) S ; {Q}
{I ∧ B} S ; {I}

{I} while (B) S ; {I ∧ ¬B}

• Blue: proof obligations the while rule needs a
• for loop: exercise 2.22! loop invariant!

INF4140 (18.10.12) Program Analysis Lecture 7 3 / 31

While rule

Cannot control the execution in the same manner as for if statements

Cannot tell from the code how many times the loop body will be
executed
{y ≥ 0} while (y > 0) y = y - 1;

Cannot speak about the state after the first, second, third iteration

Solution: Find some assertion I that is maintained by the loop body

Loop invariant: express properties that are preserved by the loop

Often hard to find suitable loop invariants

This course is not an exercise in finding complicated invariants

INF4140 (18.10.12) Program Analysis Lecture 7 4 / 31

While rule

{I ∧ B} S ; {I}

{I} while (B) S ; {I ∧ ¬B}

Can use this rule to reason about the more general case:

{P} while (B) S {Q}

where

P need not be the loop invariant

Q need not match (I ∧ ¬B) syntactically

Combine While rule with Consequence rule to prove:

Entry: P ⇒ I

Loop: {I ∧ B} S {I}

Exit: I ∧ ¬B ⇒ Q

INF4140 (18.10.12) Program Analysis Lecture 7 5 / 31

While rule: example

{0 ≤ n} k = 0; {k ≤ n} while (k < n) k = k+ 1; {k == n}

Composition rule splits a proof in two: assignment and loop.
Let k ≤ n be the loop invariant

Entry: k ≤ n follows from itself

Loop:
k < n ⇒ k + 1 ≤ n

{k ≤ n ∧ k < n} k = k+ 1 {k ≤ n}

Exit: (k ≤ n ∧ ¬(k < n)) ⇒ k == n

INF4140 (18.10.12) Program Analysis Lecture 7 6 / 31

await statement

{P ∧ B} S; {Q}

{P} < await (B); S;> {Q}

Remember that we are reasoning about safety properties

Termination is assumed

Nothing bad will happen

The rule does not speak about waiting or progress

INF4140 (18.10.12) Program Analysis Lecture 7 7 / 31

Concurrent execution

Assume two statements S1 og S2 such that:

{P1} < S1;> {Q1}
{P2} < S2;> {Q2}

First attempt for a co..oc rule in PL:

{P1} < S1;> {Q1} {P2} < S2;> {Q2}

{P1 ∧ P2} co < S1;> || < S2;> oc {Q1 ∧ Q2}

Example (Problem with this rule)

{x == 0} < x = x+ 1;> {x == 1}
{x == 0} < x = x+ 2;> {x == 2}

{x == 0} co < x = x+ 1;> || < x = x+ 2;> oc {x == 1 ∧ x == 2}

but this conclusion is not true: the postcondition should be x == 3!

INF4140 (18.10.12) Program Analysis Lecture 7 8 / 31

Interference problem

S1 : {x == 0} < x = x+ 1;> {x == 1}
S2 : {x == 0} < x = x+ 2;> {x == 2}

The execution of S2 interferes with the pre- and postconditions for S1

The assertion x == 0 need not hold when S1 starts execution

The execution of S1 interferes with the pre- and postconditions for S2

The assertion x == 0 need not hold when S2 starts execution

Solution: weaken the assertions to account for the other process:

S1 : {x == 0 ∨ x == 2} < x = x+ 1;> {x == 1 ∨ x == 3}
S2 : {x == 0 ∨ x == 1} < x = x+ 2;> {x == 2 ∨ x == 3}

INF4140 (18.10.12) Program Analysis Lecture 7 9 / 31

Interference problem

Now we can try to apply the rule:

{x == 0 ∨ x == 2} < x = x+ 1;> {x == 1 ∨ x == 3}
{x == 0 ∨ x == 1} < x = x+ 2;> {x == 2 ∨ x == 3}

{PRE} co < x = x+ 1;> || < x = x+ 2;> oc {POST}

where:

PRE : (x == 0 ∨ x == 2) ∧ (x == 0 ∨ x == 1)
POST : (x == 1 ∨ x == 3) ∧ (x == 2 ∨ x == 3)

which gives:

{x == 0} co < x = x+ 1;> || < x = x+ 2;> oc {x == 3}

INF4140 (18.10.12) Program Analysis Lecture 7 10 / 31

Concurrent execution

Assume {Pi} Si {Qi} for all S1, . . . , Sn

{Pi} Si; {Qi} are interference free

{P1 ∧ . . . ∧ Pn} co S1; || . . . ||Sn; oc {Q1 ∧ . . . ∧ Qn}

Critical conditions are assertions outside critical sections (Pi ,Qi)

Interference freedom: The value of a critical condition is not changed
by execution of other processes

INF4140 (18.10.12) Program Analysis Lecture 7 11 / 31

Interference freedom

Interference freedom

{C ∧ pre(S)} S {C}

C : critical condition
S : statement in some other process with precondition pre(S)

The critical condition “survives” execution of the other process

{P1} S1; {Q1} {P2} S2; {Q2}

{P1 ∧ P2} co S1; || S2; oc {Q1 ∧ Q2}

Four interference requirements:

{P2 ∧ P1} S1 {P2} {P1 ∧ P2} S2 {P1}
{Q2 ∧ P1} S1 {Q2} {Q1 ∧ P2} S2 {Q1}

INF4140 (18.10.12) Program Analysis Lecture 7 12 / 31

Avoiding interference: Weakening assertions

S1 : {x == 0} < x = x+ 1;> {x == 1}
S2 : {x == 0} < x = x+ 2;> {x == 2}

Here we have interference, for instance the precondition of S1 is not
maintained by execution of S2:

{(x == 0) ∧ (x == 0)} x = x+ 2; {x == 0}

is not true

However, after weakening:

S1 : {x == 0 ∨ x == 2} < x = x+ 1;> {x == 1 ∨ x == 3}
S2 : {x == 0 ∨ x == 1} < x = x+ 2;> {x == 2 ∨ x == 3}

{(x == 0 ∨ x == 2) ∧ (x == 0 ∨ x == 1)} x = x+ 2 {x == 0 ∨ x == 2}

(Correspondingly for the other three critical conditions)

INF4140 (18.10.12) Program Analysis Lecture 7 13 / 31

Avoiding interference: Disjoint variables

V set: global variables referred (i.e. read or written) to by a process

W set: global variables written to by a process

Reference set: global variables in a critical condition of one process

No interference if:

W set of S1 is disjoint from reference set of S2

W set of S2 is disjoint from reference set of S1

However, variables in a critical condition of one process will often be
among the written variables of another

INF4140 (18.10.12) Program Analysis Lecture 7 14 / 31

Avoiding interference: Global invariants

Global invariants are:

Some condition that only refers to global (shared) variables

Holds initially

Preserved by all assignments

We avoid interference if critical conditions are on the form {I ∧ L} where:

I is a global invariant

L only refers to local variables of the considered process

INF4140 (18.10.12) Program Analysis Lecture 7 15 / 31

Avoiding interference: Synchronization

Hide critical conditions

MUTEX to critical sections

co . . . ;S ; . . . || . . . ;S1; {C}S2; . . . oc

S might interfere with C

Hide the critical condition by a critical region:

co . . . ;S ; . . . || . . . ;<S1; {C}S2;> . . . oc

INF4140 (18.10.12) Program Analysis Lecture 7 16 / 31

Example: Producer/ consumer synchronization

Let Producer be a process that delivers data to a Consumer process

PC : c ≤ p ≤ c + 1∧ (p == c + 1) ⇒ (buf == a[p − 1])

Let PC be a global invariant of the program:

int buf, p = 0, c = 0;

process Producer { process Consumer {

int a[n]; int b[n];

while (p < n) { while (c < n) {

< await (p == c) ; > < await (p > c) ; >

buf = a[p] b[c] = buf

p = p+1; c = c+1;

} }

} }

INF4140 (18.10.12) Program Analysis Lecture 7 17 / 31

Example: Producer

Loop invariant of Producer:
IP : PC ∧ p <= n

process Producer {

int a[n];

{IP} // entering loop

while (p < n) { {IP ∧ p < n}
< await (p == c); > {IP ∧ p < n ∧ p == c}

{IP}p←p+1,buf←a[p]

buf = a[p]; {IP}p←p+1

p = p + 1; {IP}
} {IP ∧ ¬(p < n)} // exit loop

⇔ {PC ∧ p == n}
}

{IP ∧ p < n ∧ p == c} ⇒ {IP}p←p+1,buf←a[p]

INF4140 (18.10.12) Program Analysis Lecture 7 18 / 31

Example: Consumer

Loop invariant of Consumer:
IC : PC ∧ c <= n ∧ b[0 : c − 1] == a[0 : c − 1]

process Consumer {

int b[n];

{IC} // entering loop

while (c < n) { {IC ∧ c < n}
< await (p > c) ; > {IC ∧ c < n ∧ p > c}

{IC}c←c+1,b[c]←buf

b[c] = buf; {IC}c←c+1

c = c + 1; {IC}
} {IC ∧ ¬(c < n)} // exit loop

⇔ {PC ∧ c == n ∧ b[0 : c − 1] == a[0 : c − 1]}
}

{IC ∧ c < n ∧ p > c} ⇒ {IC}c←c+1,b[c]←buf

INF4140 (18.10.12) Program Analysis Lecture 7 19 / 31

Example: Producer/Consumer

The final state of the program satisfies:

PC ∧ p == n ∧ c == n ∧ b[0 : c − 1] == a[0 : c − 1]

which ensures that all elements in a are received and occur in the same
order in b

Interference freedom is ensured by the global invariant and await

statements

If we combine the two assertions after the await statements, we get:

IP ∧ p < n ∧ p == c ∧ IC ∧ c < n ∧ p > c

which gives false!
At any time, only one process can be after the await statement!

INF4140 (18.10.12) Program Analysis Lecture 7 20 / 31

Monitor Invariant

monitor name {

monitor variable # shared global variable

initialization # for the monitor’s procedures

procedures

}

A monitor invariant (I) is used to describe the monitor’s inner state

Express relationship between monitor variables

Maintained by execution of procedures:

Must hold after initialization
Must hold when a procedure terminates
Must hold when we suspend execution due to a call to wait

Can assume that the invariant holds after wait and when a procedure
starts

Should be as strong as possible!

INF4140 (18.10.12) Program Analysis Lecture 7 21 / 31

Axioms for Signal and Continue (1)

Assume that the monitor invariant I and predicate P does not mention cv.
Then we can set up the following axioms:

{I} wait(cv) {I}
{P} signal(cv) {P} for arbitrary P

{P} signal_all(cv) {P} for arbitrary P

INF4140 (18.10.12) Program Analysis Lecture 7 22 / 31

Monitor solution to reader/writer problem

Verification of the invariant over request_read

I : (nr == 0 ∨ nw == 0) ∧ nw ≤ 1

procedure request_read() {

{I}
while (nw > 0) { {I ∧ nw > 0}

{I} wait(oktoread); {I}
}

{I ∧ nw == 0}
nr = nr + 1;

{I}
}

(I ∧ nw > 0) ⇒ I

(I ∧ nw == 0) ⇒ Inr ←(nr+1)

INF4140 (18.10.12) Program Analysis Lecture 7 23 / 31

Axioms for Signal and Continue (2)

Assume that the invariant can mention the number of processes in the
queue to a condition variable.

Let #cv be the number of processes waiting in the queue to cv .

The test empty(cv) is then identical to #cv == 0

wait(cv) is modelled as an extension of the queue followed by processor
release:

wait(cv) : {?} #cv = #cv + 1; {I} sleep{I}

by assignment axiom:

wait(cv) : {I#cv ←(#cv+1)} #cv = #cv + 1; {I} sleep{I}

INF4140 (18.10.12) Program Analysis Lecture 7 24 / 31

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the queue is not
empty:

signal(cv) : {?} if (#cv != 0) #cv = #cv − 1 {P}

signal(cv) : {((#cv == 0) ⇒ P) ∧ ((#cv 6= 0) ⇒ P#cv ←(#cv−1))}

if (#cv != 0) #cv = #cv − 1
{P}

signal_all(cv): {P#cv ←0} #cv = 0 {P}

INF4140 (18.10.12) Program Analysis Lecture 7 25 / 31

Axioms for Signal and Continue (4)

Together this gives:

{I#cv ←(#cv+1)} wait(cv) {I}

{((#cv == 0) ⇒ P) ∧ ((#cv 6= 0) ⇒ P#cv ←(#cv−1))} signal(cv) {P}

{P#cv ←0} signal_all(cv) {P}

If we know that #cv 6= 0 whenever we signal, then the axiom for
signal(cv) be simplified to:

{P#cv ←(#cv−1)} signal(cv) {P}

Note! #cv is not allowed in statements!

Only used for reasoning

INF4140 (18.10.12) Program Analysis Lecture 7 26 / 31

Example: FIFO semaphore verification (1)

monitor FIFO_semaphore {

int s = 0; # value of semaphore

cond pos; # signalled only when #pos>0

procedure Psem() {

if (s==0)

wait(pos);

else

s = s-1;

}

procedure Vsem() {

if empty(pos)

s=s+1;

else

signal(pos);

}

}

Consider the following monitor invariant:

s ≥ 0 ∧ (s > 0 ⇒ #pos == 0)

No process is waiting if the semaphore value is positive
INF4140 (18.10.12) Program Analysis Lecture 7 27 / 31

Example: FIFO semaphore verification (2)

I : s ≥ 0 ∧ (s > 0 ⇒ #pos == 0)

procedure Psem() {

{I}
if (s==0) {I ∧ s == 0}

{I#pos ←(#pos+1)} wait(pos); {I}

else {I ∧ s 6= 0}
{Is←(s−1)} s = s-1; {I}

{I}
}

INF4140 (18.10.12) Program Analysis Lecture 7 28 / 31

Example: FIFO semaphore verification (3)

I : s ≥ 0 ∧ (s > 0 ⇒ #pos == 0)

This gives two proof obligations:
If branch:

(I ∧ s == 0) ⇒ I#pos←(#pos+1)

s == 0 ⇒ s ≥ 0 ∧ (s > 0 ⇒ #pos + 1 == 0)
s == 0 ⇒ s ≥ 0

Else branch:

(I ∧ s 6= 0) ⇒ Is←(s−1)

(s > 0 ∧#pos == 0) ⇒ s − 1 ≥ 0 ∧ (s − 1 ≥ 0 ⇒ #pos == 0)
(s > 0 ∧#pos == 0) ⇒ s > 0 ∧#pos == 0

INF4140 (18.10.12) Program Analysis Lecture 7 29 / 31

Example: FIFO semaphore verification (4)

I : s ≥ 0 ∧ (s > 0 ⇒ #pos == 0)

procedure Vsem() {

{I}
if empty(pos) {I ∧#pos == 0}

{Is←(s+1)}s=s+1; {I}

else {I ∧#pos 6= 0}
{I#pos ←(#pos−1)} signal(pos); {I}

{I}
}

INF4140 (18.10.12) Program Analysis Lecture 7 30 / 31

Example: FIFO semaphore verification (5)

I : s ≥ 0 ∧ (s > 0 ⇒ #pos == 0)

As above, this gives two proof obligations:
If branch:

(I ∧#pos == 0) ⇒ Is←(s+1)

(s ≥ 0 ∧#pos == 0) ⇒ s + 1 ≥ 0 ∧ (s + 1 > 0 ⇒ #pos == 0)
(s ≥ 0 ∧#pos == 0) ⇒ s + 1 ≥ 0 ∧#pos == 0

Else branch:

(I ∧#pos 6= 0) ⇒ I#pos←(#pos−1)

(s == 0 ∧#pos 6= 0) ⇒ s ≥ 0 ∧ (s > 0 ⇒ #pos − 1 == 0)
s == 0 ⇒ s ≥ 0

INF4140 (18.10.12) Program Analysis Lecture 7 31 / 31

