Program Analysis

INF4140

18.10.12

Lecture 7

INF4140 (18.10.12) Program Analysis Lecture 7 1/31

Program Logic (PL)

@ PL lets us express and prove properties about programs

@ Formulas are on the form

{P}S{Q}

S: program statement(s)

P and Q: assertions over program states
P: Precondition

Q: Postcondition

¢ © ¢ ¢

If we can use PL to prove some property of a program, then this property
will hold for all executions of the program J

INF4140 (18.10.12) Program Analysis Lecture 7 2/31

PL rules from last week

Sequential composition Consequence

{P} S {R} {R} S {Q} PP=P {P}S{Q} Q=

{P} 51: 5 {Q} {P'}S{Q}

Conditional while loop

{PAB}S; {Q} (PA-B)=Q {INB}S; {I}

{P}if(B) S; {Q} {I} while (B) S; {I A—=B}

e Blue: proof obligations the while rule needs a
o for loop: exercise 2.22! loop invariant!

INF4140 (18.10.12) Program Analysis Lecture 7 3/31

While rule

@ Cannot control the execution in the same manner as for if statements
@ Cannot tell from the code how many times the loop body will be
executed
{y >0} while (y >0) y =y - 1;
s Cannot speak about the state after the first, second, third iteration
@ Solution: Find some assertion / that is maintained by the loop body
o Loop invariant: express properties that are preserved by the loop
@ Often hard to find suitable loop invariants
@ This course is not an exercise in finding complicated invariants

INF4140 (18.10.12) Program Analysis Lecture 7 4 /31

While rule

{INB} S; {I}
{I} while (B) S; {I AN—=B}

Can use this rule to reason about the more general case:

{P} while (B)S {Q}

where
@ P need not be the loop invariant
@ @ need not match (/ A =B) syntactically
Combine While rule with Consequence rule to prove:
o Entry: P=1
@ Loop: {IAB}s{l}
o Exit: IN-B=Q

INF4140 (18.10.12) Program Analysis Lecture 7 5 /31

While rule: example

{0<n}k=0; {k<n}while(k<n)k=k+1; {k==n}
Composition rule splits a proof in two: assignment and loop.
Let kK < n be the loop invariant
@ Entry: k < n follows from itself

o Loop:
k<n=k+1<n
{k<nAnk<ntk=k+1{k<n}

o Exit: (k <nA—=(k<n)=k==n

INF4140 (18.10.12) Program Analysis Lecture 7 6 /31

await statement

{PAB}S; {Q}
{P} < await (B);S; > {Q}

Remember that we are reasoning about safety properties
@ Termination is assumed
@ Nothing bad will happen

@ The rule does not speak about waiting or progress

INF4140 (18.10.12) Program Analysis Lecture 7 7/31

Concurrent execution

Assume two statements S; og S, such that:

{P1} <81, > {1}
{P2} < 82;> {Q2}
First attempt for a co..oc rule in PL:

{P1} <81;>{Q@i} {Pa} <8y >{Qa}
{Pi APy} co <81;> | <82;> oc{@Q1 N}

Example (Problem with this rule)

{x==0}<x=x+1;>{x==1}
{x==0}<x=x+2,>{x==2}
{x==0}co <x=x4+1>||<x=x4+2;> oc{x==1Ax==2}

but this conclusion is not true: the postcondition should be x == 3!

V.
INF4140 (18.10.12) Program Analysis Lecture 7 8 /31

Interference problem

S1: {x==0}<x=x+1,>{x==1}
Sot {x==0}<x=x+2;>{x==2}

@ The execution of S, interferes with the pre- and postconditions for S;
o The assertion x == 0 need not hold when S; starts execution

@ The execution of Sy interferes with the pre- and postconditions for S,
o The assertion x == 0 need not hold when S, starts execution

Solution: weaken the assertions to account for the other process:

S1: {x==0vx==2}<x=x+1,>{x==1Vvx==3}
St {x==0vx==1}<x=x+2,>{x==2Vx==3}

INF4140 (18.10.12) Program Analysis Lecture 7 9/31

Interference problem

Now we can try to apply the rule:

{x=0Vx==2}<x=x+1,>{x==1Vx==3}
{x==0Vx==1} <x=x+2;>{x==2Vx==3}
{PRE} co <x=x+1,>]||<x=x+2;> oc {POST}

where:

PRE :(x==0Vx==2)A(x==0Vx==1)
POST : (x==1Vx==3)A(x ==2Vx==3)

which gives:

{x==0}co <x=x+1;>|[<x=x+2,> oc {x==3}

INF4140 (18.10.12) Program Analysis Lecture 7 10 / 31

Concurrent execution

Assume {P;} S; {Q;} forall Sy,...,S,
{P;} 8:; {Qi} are interference free

{PiAN...APy} coSy;||...||Sn; oc {Q1 A ... A Qn}

@ Critical conditions are assertions outside critical sections (P;, Q;)
@ Interference freedom: The value of a critical condition is not changed
by execution of other processes

INF4140 (18.10.12) Program Analysis Lecture 7 11 /31

Interference freedom

Interference freedom

{C N pre(S)} s {C}

C: critical condition
S: statement in some other process with precondition pre(S)

The critical condition “survives” execution of the other process

{P1} 81; {Q1} {P2} S2; { @2}
{P1 A P2} coSy;|| So; oc {Q1 N @}

Four interference requirements:

{P2 AN Pl} 5 {Pz} {Pl A\ Pz} S5 {Pl}
{Q AP} S1 {Q2} {Q1 A P2} S2 {@Q1}

INF4140 (18.10.12) Program Analysis Lecture 7 12 /31

Avoiding interference: Weakening assertions

S1: {x==0}<x=x+4+1;>{x==1}
St {x==0}<x=x+2;>{x==2}

Here we have interference, for instance the precondition of S; is not
maintained by execution of S;:

[(x==0) A (x == 0)} x =x +2; {x == 0}
is not true
However, after weakening:

S1: {x==0vx==2}<x=x+1,>{x==1Vvx==3}
St {x==0vx==1}<x=x+2,>{x==2Vx==3}
{x==0Vx==2)A(x==0Vx==1)}x=x+2{x==0Vx==2}

(Correspondingly for the other three critical conditions)

INF4140 (18.10.12) Program Analysis Lecture 7 13 /31

Avoiding interference: Disjoint variables

@ V set: global variables referred (i.e. read or written) to by a process
@ W set: global variables written to by a process

@ Reference set: global variables in a critical condition of one process

No interference if:
@ W set of Sy is disjoint from reference set of S,

@ W set of S, is disjoint from reference set of S;

However, variables in a critical condition of one process will often be
among the written variables of another

INF4140 (18.10.12) Program Analysis Lecture 7 14 / 31

Avoiding interference: Global invariants

Global invariants are:
@ Some condition that only refers to global (shared) variables
@ Holds initially
@ Preserved by all assignments

We avoid interference if critical conditions are on the form {/ A L} where:
@ [is a global invariant

@ L only refers to local variables of the considered process

INF4140 (18.10.12) Program Analysis Lecture 7 15 / 31

Avoiding interference: Synchronization

o Hide critical conditions
@ MUTEX to critical sections

co...;S;. .|| S1:{C}Sa; ... oc

S might interfere with C
Hide the critical condition by a critical region:

co...;S .|| <S51;{C}S2; > ... 0c

INF4140 (18.10.12) Program Analysis Lecture 7 16 / 31

Example: Producer/ consumer synchronization

Let Producer be a process that delivers data to a Consumer process
PC:c<p<c+1IAN(p==c+1)= (buf ==a[p—1])
Let PC be a global invariant of the program:

int buf, p =0, ¢ = 0;

process Producer {
int aln];
while (p < n) {

process Consumer {
int b[n];
while (c < n) {

< await (p == c¢) ; > < await (p > ¢) ; >
buf = alp] blc] = buf
p = pt+l; c = ctl;

}

}
} }

INF4140 (18.10.12) Program Analysis Lecture 7

17 / 31

Example: Producer

Loop invariant of Producer:
Ip: PCAp<=n

process Producer {

int aln];
{Ip} // entering loop
while (p < n) { {lp N p < n}

< await (p == ¢c); > {lpAp<nAp==c}
P} pepi1,bufeafp]

buf = alp]; {Ip} pe—pt1
p=p+1; {Ip}
Y {lp A=(p < n)} // exit loop

< {PCAp==n}
}

{/p Ap<nAp== c} = {/P}p<—p+1,buf<—a[p]

INF4140 (18.10.12) Program Analysis Lecture 7 18 / 31

Example: Consumer

Loop invariant of Consumer:
lc:PCANc<=nAbl0:c—1]==a0:c—1]

process Consumer {

int b[n];
{lc} // entering loop
while (c < n) { {lc Nc < n}

< await (p > ¢c) ; > {lcAc<nAp>c}
{IC}C<—C+1,b[C](—buf

blc] = buf; {lc}ect1
c=c+1; {Ic}
} {lc N=(c < n)} // exit loop

& {PCANc==nAb[0:c—1]==2a[0:c—1]}
}

{lene<nAp>ct={lcteccr1,blcebur

INF4140 (18.10.12) Program Analysis Lecture 7 19 / 31

Example: Producer/Consumer

The final state of the program satisfies:
PCAp==nAc==nAbl0:c—1]==2a[0:c—1]

which ensures that all elements in a are received and occur in the same
order in b

Interference freedom is ensured by the global invariant and await
statements

If we combine the two assertions after the await statements, we get:

IpAp<nAp==cAlchc<nAp>c

which gives false!
At any time, only one process can be after the await statement!

INF4140 (18.10.12) Program Analysis Lecture 7 20 /31

Monitor Invariant

monitor name {

monitor variable # shared global variable
initialization # for the monitor’s procedures
procedures

}

@ A monitor invariant (/) is used to describe the monitor's inner state
@ Express relationship between monitor variables

@ Maintained by execution of procedures:
@ Must hold after initialization
o Must hold when a procedure terminates
o Must hold when we suspend execution due to a call to wait

o Can assume that the invariant holds after wait and when a procedure
starts

@ Should be as strong as possible!

INF4140 (18.10.12) Program Analysis Lecture 7 21 /31

Axioms for Signal and Continue (1)

Assume that the monitor invariant / and predicate P does not mention cv.
Then we can set up the following axioms:

{I} wait(cev) {/}
{P} signal(cv) {P} for arbitrary P
{P} signal all(cv){P} for arbitrary P

INF4140 (18.10.12) Program Analysis Lecture 7 22 /31

Monitor solution to reader/writer problem

Verification of the invariant over request_read

I:(nr==0Vnw==0)Anw<1

procedure request_read() {
0!
while (aw > 0) { {I A nw > 0}
{l} wait(oktoread); {/}

}
{I AN nw == 0}
nr = nr + 1;
{1}
}
(INnw>0)=1
(I N nw ==) = Inr(—(nr—i—l)

INF4140 (18.10.12) Program Analysis Lecture 7 23 /31

Axioms for Signal and Continue (2)

Assume that the invariant can mention the number of processes in the
queue to a condition variable.

@ Let #cv be the number of processes waiting in the queue to cv.
@ The test empty(cv) is then identical to #cv ==

wait(cv) is modelled as an extension of the queue followed by processor
release:

wait(cv) : {7} #cv = #cv + 1; {1} sleep{/}
by assignment axiom:

wait(cv) : {lucy (#cvi1)) Fev = Fcv + 1L {1} sleep{/}

INF4140 (18.10.12) Program Analysis Lecture 7 24 /31

Axioms for Signal and Continue (3)

signal(cv) can be modelled as a reduction of the queue, if the queue is not
empty:

signal(cv) : {7} if (#cv!= 0) #cv =#cv —1{P}

signal(cv) : {((#cv ==0) = P) A ((#cv # 0) = Pyey e (gev-1))}
if (#cv!= 0) #cv=#cv—1
{P}

o signal _all(cv): {Pyc 0} #cv=0{P}

INF4140 (18.10.12) Program Analysis Lecture 7 25 /31

Axioms for Signal and Continue (4)

Together this gives:

{/#cv e(#cv+1)} Wait(CV) {/}
{((#cv ==0) = P) A ((#cv #0) = Pyey o (#v-1))} signal(cv) {P}
{P4cy 0} signal all(cv) {P}

If we know that #cv # 0 whenever we signal, then the axiom for
signal(cv) be simplified to:

{Pyev (#cv-1)} signal(cv) {P}

Note! #cv is not allowed in statements!

@ Only used for reasoning

INF4140 (18.10.12) Program Analysis Lecture 7 26 / 31

Example: FIFO semaphore verification (1)

monitor FIFO_semaphore {

int s = 0; # value of semaphore
cond pos; # signalled only when #pos>0
procedure Psem() { procedure Vsem() {
if (s==0) if empty(pos)
wait(pos); s=s+1;
else else
s = s-1; signal(pos);
} +

}

Consider the following monitor invariant:
s>0A(s>0= #pos==0)

No process is waiting if the semaphore value is positive
INF4140 (18.10.12) Program Analysis Lecture 7 27 / 31

Example: FIFO semaphore verification (2)

I: s>0A(s>0= #pos==0)

procedure Psem() {
{1}
if (s==0) {/ As==0}
{/#pos <—(#p05+1)} Wait(pos); {/}
else {/ As# 0}
{ls<—(s—1)} s = s-1; {/}
{1}
}

INF4140 (18.10.12) Program Analysis Lecture 7 28 / 31

Example: FIFO semaphore verification (3)

I: s>0A(s>0= #pos==0)

This gives two proof obligations:

If branch:
(/ Ns == O) = /#pos «—(#pos+1)
s == =5s>0A(s>0= #pos+1==0)
s == =s5>0

Else branch:

(I Ns# 0) = I —(s—1)

(s>0AN#pos==0)=s5s—-1>0A(s—1>0= #pos ==0)
(s >0A#pos ==0)=s>0AF#pos ==

INF4140 (18.10.12) Program Analysis Lecture 7

29 / 31

Example: FIFO semaphore verification (4)

I: s>0A(s>0= #pos==0)

procedure Vsem() {
{1}

if empty(pos) {/ A #pos == 0}

s e(s+1)}s=S+1 s {1}
else {/ A #pos # 0}
{4 pos «(#pos—1)} signal(pos); {/}

{1}
}

INF4140 (18.10.12) Program Analysis Lecture 7 30 /31

Example: FIFO semaphore verification (5)

I: s>0A(s>0= #pos==0)

As above, this gives two proof obligations:
If branch:

(//\#pos - 0) = /s<—(s+1)
(s>0A#pos==0)=s5s+1>0A(s+1>0= #pos==0)
(s >0A#pos==0)=s+1>0A#pos ==

Else branch:
(I A #pos 7é 0) = l#pos «—(#pos—1)
(s==0A#pos#0)=5s>0A(s>0= #pos—1==0)
s == =s52>0
INF4140 (18.10.12) Program Analysis Lecture 7

31 /31

