RPC and Rendezvous

INF4140

01.11.12

Lecture 9

More on asynchronous message passing
@ Interacting processes with different patterns of communication

@ Summary

Remote procedure call (RPC)
e What is RPC

@ Example: time server

Rendezvous
@ What is rendezvous

@ Examples: buffer, time server

Combinations of RPC, rendezvous and message passing

e Examples: bounded buffer, readers/writers

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 2/31

Interacting peers (processes): exchanging values example

Look at processes as peers.

Example: Exchanging values
e Consider n processes P[0], ..., P[n—1], n>1
@ Every process has a number — stored in a local variable v
@ Goal: all processes knows the largest and smallest number.

Look at different patterns of communication:

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 3/31

Interacting peers (processes): exchanging values example

Look at processes as peers.

Example: Exchanging values
e Consider n processes P[0], ..., P[n—1], n>1
@ Every process has a number — stored in a local variable v
@ Goal: all processes knows the largest and smallest number.

Look at different patterns of communication:

— Pa

N/ / \ /N

Po Po P3
Pl/ \ Ps \ / \ /
P2 P1 P2
centralized symetrical ring shaped

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 3/31

Centralized solution

Process P[0] is the Ps Ps
coordinator process: \ /
e P[0] does the calculation | P
@ The other processes sends their Py / P2
values to P[0] and waits for a o,
reply.

Number of messages: (Just count the number of send:)
P[O]: n—1
Pl1],...,P[n—=1]: (n—1)x1
Total: (n—1)+ (n—1) = 2(n — 1) messages

Number of channels: n

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 4/31

Centralized solution: code

chan values(int),
results [1..n—1](int smallest, int largest);

process P[0] { # coordinator process

int v =
int new, smallest = v, largest = v; # initialization
get values and store the largest and smallest
for [i =1 to n—1] {
receive values(new);
if (new < smallest) smallest = new;
if (new > largest) largest = new;

}

send results
for [i =1 to n—1]
send results[i](smallest, largest);

process P[| =1 to n—1] {
int v =
int smallest, largest;

send values(v);
receive results[i](smallest, largest);}
Fig. 7.11 in Andrews (corrected a bug)

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 5/31

Symmetrical solution

“Single-programme, multiple data (SPMD)"-solution:

Each process executes the same code
and shares the results with all other processes.

Number of messages:
n processes sending n — 1 messages each,
Total: n(n— 1) messages.

Number of channels: n

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 6 /31

Symmetrical solution

chan values[n](int);

process P[i = 0 to n—1] {
int v = ;
int new, smallest = v,

send v to all n—1 oth
for [j =0 to n—1 st j
send values[j](v);

get n—1 values

: code

largest = v;

er processes
= i]

and store the smallest and largest.
for [j =1 to n=1] { # j not used in the

receive values[i](new
if (new < smallest)
if (new > largest)

)
smallest = new;
largest = new;

} # Fig. 7.12 from Andrews

INF4140 (01.11.12)

RPC and Rendezvous

loop

Lecture 9

7/31

Ring solution

Ps P4

/N

Po P3

N/

P1 P2

Almost symmetrical, except P[0], P[n — 2] and P[n — 1].

Each process executes the same code
and sends the results to the next process (if necessary).

Number of messages:

P[O]: 2
P[], ..., P[n—=3]: (n—3)x2
Pln—2]: 1
Pln—1]: 1

242(n—3)4+1+1=2(n— 1) messages sent.

Number of channels: n .

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 8/31

}

Ring solution: code (1)

chan values[n](int

smallest , int

process P[O] {# starts the exch

int v =
int smallest = v,

largest = v;

send v to the next process,
send values[1l](smallest, large

get the global

smallest and

and send them to P[1]

receive values[0](smallest,
send values[1](smallest,

INF4140 (01.11.12)

largest);
ange
P[1]

st);
largest from P[n—1]

largest);
largest);

RPC and Rendezvous

Lecture 9

9/31

Ring solution: code (2)

process P[i =1 to n—1] {
int v = ;
int smallest, largest;

get smallest and largest so far,

and update them by comparing them to v
receive values[i](smallest, largest)
if (v < smallest) smallest = v;
if (v > largest) largest = v;
forward the result, and wait for the global result
send values[(i+1) mod n](smallest, largest);
if (i <n—1)
receive values[i](smallest, largest);
forward the global result, but not from P[n—1] to P[0]
if (i <n-2)
send values[i+1](smallest, largest);
} # Fig. 7.13 from Andrews (modified)

INF4140 (01.11.12) RPC and Rendezvous Lecture 9

10 / 31

Message passing: Sumary

Message passing is well suited to programming filters and interacting peers
(where processes communicates one way by one or more channels).

May be used for client/server applications, but:
@ Each client must have its own reply channel
@ In general: two way communication needs two channels

= many channels

RPC and rendezvous are better suited for client/server applications.

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 11 /31

Remote Procedure Call: main idea

CALLER

at computer A

call foo(ARGS);

INF4140 (01.11.12)

CALLEE

at computer B
op foo(FORMALS); # declaration

proc foo(FORMALS) # new process

end;

RPC and Rendezvous Lecture 9

12 /31

RPC (cont.)

RPC combines some elements from monitors and message passing

@ As ordinary procedure call, but
caller and callee may be on different machines.

@ Caller is blocked until the called procedure is done, as with monitor
calls and synchronous message passing.
Asynchronous programming is not supported directly.

@ A new process handles each call.

@ Potentially two way communication: caller sends arguments and
receives return values.

1B H
ut in Creol ...
INF4140 (01.11.12) RPC and Rendezvous Lecture 9 13 /31

RPC: module, procedure, process

Module: new program component — contains both
@ procedures and processes.

module M
headers of exported operations;
body
variable declarations;
initialization code;
procedures for exported operations;
local procedures and processes;
end M

Modules may be executed on different machines
M has: Procedures and processes

@ may share variables
@ execute concurrently = must be synchronized to achieve mutex

@ May only communicate with processes in M" by procedures exported
by M’

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 14 / 31

RPC: operations

Declaration of operation O:
op O(formal parameters.) [returns result] ;

Implementation of operation O:

proc O(formal identifiers.) [returns result identifier]{
declaration of local variables;
statements

}

Call of operation O in module M:
call M.O(arguments)

Processes: as before.

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 15 / 31

Example: Time server (RPC)

Problem: Implement a module that provides timing services to processes
in other modules.

The time server defines two visible operations:
@ get_time() returns int — returns time of day

o delay(int interval) — let the caller sleep a given number of time units

Multiple clients may call get_time and delay at the same time
= Need to protect the variables.

The time server has an internal process that gets interrupts from a
machine clock and updates tod.

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 16 / 31

Time server: code (RPC 1)

module TimeServer
op get_time() returns int;
op delay(int interval);

body
int tod = 0; # time of day
sem m = 1; # for mutex
sem d[n] = ([n] 0); # for delayed processes
queue of (int waketime, int process_id) napQ;
when m =— 1, tod < waketime for delayed processes

proc get_time() returns time { time = tod; }
proc delay(int interval) {

P(m); # assume unique myid and i [0,n—1]
int waketime = tod + interval;

insert (waketime, myid) at appropriate place in napQ;
V(m);

P(d[myid]); # Wait to be awoken

process Clock

end TimeServer

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 17 /31

Time server: code (RPC 2)

process Clock {
int id; start hardware timer;

while (true) {
wait for interrupt, then restart hardware timer
tod = tod + 1;

P(m); # mutex
while (tod >= smallest waketime on napQ) {

remove (waketime, id) from napQ;

V(d[id]); # awake process
V(m); # mutex

I
end TimeServer # Fig. 8.1 of Andrews

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 18 / 31

Rendezvous

RPC:
@ Offers inter module communication

@ Synchronization must be programmed explicitly

Rendezvous:
@ Known from the language Ada (US DoD)
@ Combines communication and synchronization between processes

@ No new process made when a call is made.
Does ‘rendezvous’ with existing process

@ Operations are executed one at the time

synch_send and receive may be considered as primitive rendezvous.

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 19 /31

Rendezvous: main idea

CALLER

at computer A

call foo(ARGS);

INF4140 (01.11.12)

CALLEE

at computer B

op foo(FORMALS); # declaration

. # existing process
in foo(FORMALS) ->
BODY;
ni

RPC and Rendezvous Lecture 9

20 / 31

Rendezvous: module declaration

module M
op Oi(types);

op On(types);
body

process P; {
variable declarations;

while (true)
in Oi(formals) and By —> Sy;

[] O, (formals) and B, —> Sj;
ni

}

. other processes
end M

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 21 /31

Rendezvous: syntax of expressions

Call:

call O; (expri,...,exprm);
Input statement, multiple guarded expressions:
in Oi(vi,...Vm;) and By —> Si;

[1 On(vi,...Vm,) and B, —> Sg;

ni

The guard consists of:
@ and B; — synchronization expression (optional)

@ S; — statements (one or more)

The variables vy, ..., vy, may be referred by B;
and S; may read/write to them.

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 22 /31

Rendezvous: semantics of input statement

Consider the following:

in ...

[1 Gi(vi,...,vm;) and B; —> §;;
-
The guard succeeds when O; is called and B; is true (or omitted).

Execution of the in statement:
@ Delays until a guard succeeds
@ If more than one guard succeed, the oldest call is served
@ Values are returned to the caller

@ The the call- and in statements terminates

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 23 /31

Example: bounded buffer (rendezvous)

module BoundedBuffer
op deposit(elem), fetch(result elem);
body
process Buffer {
elem buf[n];
int front = 0, rear = 0, count = O0;
while (true)
in deposit(item) and count < n —>
buf[rear] = item; count++;
rear = (rear+1) mod n;
[] fetch(item) and count > 0 —>
item = buf[front]; count——;
front = (front+1) mod n;
ni

}

end BoundedBuffer # Fig. 8.5 of Andrews

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 24 /31

Example: time server (rendezvous)

module TimeServer
op get_time() returns int;

op delay(int); # Waketime as argument
op tick (); # called by the clock interrupt handler
body

process Timer {
int tod = 0;
start timer;
while (true)
in get_time() returns time —> time = tod;
] delay(waketime) and waketime <= tod —> skip;
[1 tick() —> { tod++; restart timer;

ni

}
end TimeServer # Fig. 8.7 of Andrews

INF4140 (01.11.12) RPC and Rendezvous Lecture 9

25 / 31

RPC, rendezvous and message passing

We do now have several combinations:

invocation service effect

call proc procedure call (RPC)

call in rendezvous

send proc dynamic process creation

send in asynchronous message passing

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 26 / 31

RPC, rendezvous and message passing

We do now have several combinations:

invocation service effect

call proc procedure call (RPC)

call in rendezvous

send proc dynamic process creation

send in asynchronous message passing

in addition (not in Andrews)

@ asynchronous procedure call, wait-by-necessity, futures

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 26 / 31

Rendezvous, message passing and semaphores

Comparing input statements and receive:
in O(ay, ...,an) ->vi=a1,...,v,=a, ni <= receive O(vy, ..., v,)
Comparing message passing and semaphores:

send O() and receive O() <= V(O) and P(O)

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 27 /31

Example: Bounded buffer (again)

module BoundedBuffer

op deposit(elem), fetch(result elem);

semaphores

”

body
elem buf[n];
int front = 0, rear = 0;
local operation to simulate semaphores
op empty(), full (), mutexD(), mutexF();
send mutexD (); send mutexF (); # init.
for [i =1 to n] # init.

send empty ();

proc deposit(item) {

receive empty(); receive mutexD ();
buf[rear] = item; rear = (rear+1) mod n;

send mutexD (); send full ();
}

proc fetch (item) {

receive full(); receive mutexF ();
item = buf[front] ; front = (front+1) mod n;

send mutexF (); send empty();

INF4140 (01.11.12)

}
end BoundedBuffer # Fig. 8.12 of Andrews

RPC and Rendezvous

empty—"semaphore

’

to
to

1
n

Lecture 9

28 / 31

The primitive 70O in rendezvous

New primitive on operations, similar to empty(...) for condition variables
and channels.

70 means number of pending invocations of operation O.
Useful in the input statement to give priority:

in O ...-> 5y;

[]O2...and 701 == 0-> Sy

ni

Here O; has a higher priority than O,.

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 29 /31

Readers and writers

module ReadersWriters

op read(result types); # uses RPC
op write(types); # uses rendezvous
body

op startread (), endread(); # local

ops.
database (DB)...;

proc read(vars) {
call startread ();

read vars from DB

get read access
send endread ();

free DB
}
process Writer {
int nr = 0;
while (true)
in startread () —> nr++;
[1 endread () —> nr——;
[l write(vars) and nr = 0 —>

write vars to DB ... ;
ni

}
end

ReadersWriters

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 30 /31

Readers and writers: prioritize writers

module ReadersWriters
op read(result types); # uses RPC
op write(types); # uses rendezvous
body
op startread (), endread(); # local ops.
database (DB)...;

proc read(vars) {

call startread (); # get read access
.. read vars from DB ...;
send endread (); # free DB

}

process Writer {

int nr = 0;

while (true)
in startread () and ?write = 0 —> nr++;
[1 endread () —> nr——;
[l write(vars) and nr = 0 —>

write vars to DB ... ;
ni

}
end ReadersWriters

INF4140 (01.11.12) RPC and Rendezvous Lecture 9 31/31

