RPC and Rendezvous

INF4140

01.11.12

Lecture 9

Outline

More on asynchronous message passing

- Interacting processes with different patterns of communication
- Summary

Remote procedure call (RPC)

- What is RPC
- Example: time server

Rendezvous

- What is rendezvous
- Examples: buffer, time server

Combinations of RPC, rendezvous and message passing

• Examples: bounded buffer, readers/writers

Interacting peers (processes): exchanging values example

Look at processes as peers.

Example: Exchanging values

- Consider n processes $P[0], \ldots, P[n-1], n > 1$
- Every process has a number stored in a local variable v
- Goal: all processes knows the largest and smallest number.

Look at different patterns of communication:

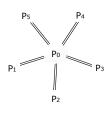
INF4140 (01.11.12)

Interacting peers (processes): exchanging values example

Look at processes as peers.

Example: Exchanging values

- Consider *n* processes $P[0], \ldots, P[n-1], n > 1$
- Every process has a number stored in a local variable v
- Goal: all processes knows the largest and smallest number.

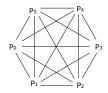

Look at different patterns of communication:

Centralized solution

Process P[0] is the coordinator process:

- P[0] does the calculation
- The other processes sends their values to P[0] and waits for a reply.

Number of messages: (Just count the number of send:)
$$P[0]: n-1$$
 $P[1], \ldots, P[n-1]: (n-1) \times 1$ Total: $(n-1)+(n-1)=2(n-1)$ messages


Number of channels: n

Centralized solution: code

```
chan values(int),
     results [1..n-1] (int smallest, int largest);
process P[0] { # coordinator process
  int v = \dots:
  int new, smallest = v, largest = v; # initialization
  # get values and store the largest and smallest
  for [i = 1 \text{ to } n-1] {
    receive values(new);
    if (new > largest) largest = new;
  # send results
  for [i = 1 \text{ to } n-1]
    send results[i](smallest, largest);
process P[i = 1 \text{ to } n-1] {
  int v = \dots
  int smallest, largest;
  send values(v);
  receive results[i](smallest, largest);}
# Fig. 7.11 in Andrews (corrected a bug)
```

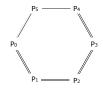
Symmetrical solution

"Single-programme, multiple data (SPMD)"-solution:

Each process executes the same code and shares the results with all other processes.

Number of messages:

n processes sending n-1 messages each, Total: n(n-1) messages.


Number of channels: n

Symmetrical solution: code

```
chan values[n](int);
process P[i = 0 \text{ to } n-1] {
 int v = \dots;
  int new, smallest = v, largest = v;
 \# send v to all n-1 other processes
 for [i = 0 \text{ to } n-1 \text{ st } i != i]
   send values[j](v);
 \# get n-1 values
 # and store the smallest and largest.
 for [i = 1 \text{ to } n-1] { # i not used in the loop
   receive values[i](new);
   if (new > largest) largest = new;
 # Fig. 7.12 from Andrews
```

Ring solution

Almost symmetrical, except P[0], P[n-2] and P[n-1].

Each process executes the same code and sends the results to the next process (if necessary).

Number of messages:

P[0]: 2
P[1], ..., P[
$$n-3$$
]: $(n-3) \times 2$
P[$n-2$]: 1
P[$n-1$]: 1

$$2 + 2(n-3) + 1 + 1 = 2(n-1)$$
 messages sent.

Number of channels: n.

8 / 31

Ring solution: code (1)

```
chan values[n](int smallest, int largest);

process P[0] { # starts the exchange
  int v = ...;
  int smallest = v, largest = v;
  # send v to the next process, P[1]
  send values[1](smallest, largest);
  # get the global smallest and largest from P[n-1]
  # and send them to P[1]
  receive values[0](smallest, largest);
  send values[1](smallest, largest);
}
```

Ring solution: code (2)

```
process P[i = 1 \text{ to } n-1] {
 int v = \dots
 int smallest. largest:
 # get smallest and largest so far,
 # and update them by comparing them to v
 receive values[i](smallest, largest)
 if (v < smallest) smallest = v;
  if (v > largest) largest = v;
 # forward the result, and wait for the global result
 send values [(i+1) mod n](smallest, largest);
  if (i < n-1)
   receive values[i](smallest, largest);
 # forward the global result, but not from P[n-1] to P[0]
  if (i < n-2)
   send values[i+1](smallest, largest);
} # Fig. 7.13 from Andrews (modified)
```

Message passing: Sumary

Message passing is well suited to programming filters and interacting peers (where processes communicates one way by one or more channels).

May be used for client/server applications, but:

- Each client must have its own reply channel
- In general: two way communication needs two channels
- ⇒ many channels

RPC and rendezvous are better suited for client/server applications.

Remote Procedure Call: main idea

```
CALLER

at computer A

at computer B

op foo(FORMALS); # declaration

...

call foo(ARGS); -----> proc foo(FORMALS) # new process

...

end;
```

RPC (cont.)

RPC combines some elements from monitors and message passing

- As ordinary procedure call, but caller and callee may be on different machines.
- Caller is blocked until the called procedure is done, as with monitor calls and synchronous message passing.
 Asynchronous programming is not supported directly.¹
- A new process handles each call.
- Potentially two way communication: caller sends arguments and receives return values.

RPC: module, procedure, process

Module: new program component – contains both

procedures and processes.

```
module M
headers of exported operations;
body
variable declarations;
initialization code;
procedures for exported operations;
local procedures and processes;
end M
```

Modules may be executed on different machines

M has: Procedures and processes

- may share variables
- execute concurrently ⇒ must be synchronized to achieve mutex
- May only communicate with processes in M' by procedures exported by M'

RPC: operations

```
Declaration of operation O:
               op O(formal parameters.) [ returns result];
Implementation of operation O:
    proc O(formal identifiers.) [ returns result identifier]{
       declaration of local variables:
       statements
Call of operation O in module M:
                           call M.O(arguments)
Processes: as before.
```

4□ > 4□ > 4□ > 4□ > 4□ > □
900

Example: Time server (RPC)

Problem: Implement a module that provides timing services to processes in other modules.

The time server defines two visible operations:

- get_time() returns int returns time of day
- delay(int interval) let the caller sleep a given number of time units

Multiple clients may call get_time and delay at the same time ⇒ Need to protect the variables.

The time server has an internal process that gets interrupts from a machine clock and updates tod.

Time server: code (RPC 1)

```
module TimeServer
  op get_time() returns int;
  op delay(int interval);
body
  int tod = 0; # time of day
  \underline{\mathsf{sem}} \ \mathsf{m} = 1; \qquad \# \ \mathsf{for} \ \mathsf{mutex}
  sem d[n] = ([n] 0); # for delayed processes
  queue of (int waketime, int process_id) napQ;
  ## when m = 1, tod < waketime for delayed processes
  proc get_time() returns time { time = tod; }
  proc delay(int interval) {
          \# assume unique myid and i [0,n-1]
    P(m);
    int waketime = tod + interval:
      insert (waketime, myid) at appropriate place in napQ;
    V(m);
    P(d[myid]); # Wait to be awoken
  process Clock ...
end TimeServer
```

Time server: code (RPC 2)

Rendezvous

RPC:

- Offers inter module communication
- Synchronization must be programmed explicitly

Rendezvous:

- Known from the language Ada (US DoD)
- Combines communication and synchronization between processes
- No new process made when a call is made.
 Does 'rendezvous' with existing process
- Operations are executed one at the time

synch_send and receive may be considered as primitive rendezvous.

Rendezvous: main idea

CALLER

. . .

```
...
call foo(ARGS); ---->
```

CALLEE

```
at computer B

op foo(FORMALS); # declaration
... # existing process
in foo(FORMALS) ->
BODY;
ni
```

Rendezvous: module declaration

```
module M
  op O_1(types);
  op O_n (types);
body
  \underline{process} P_1 {
     variable declarations;
     while (true)
       in O_1 (formals) and B_1 \rightarrow S_1;
           O_n (formals) and B_n \rightarrow S_n;
        пi
  ... other processes
end M
```

Rendezvous: syntax of expressions

Call:

```
call O_i (expr<sub>1</sub>,..., expr<sub>m</sub>);
```

Input statement, multiple guarded expressions:

```
in O_1(v_1,\ldots v_{m_1}) and B_1 -> S_1; ... O_n(v_1,\ldots v_{m_n}) and B_n -> S_n; ni
```

The guard consists of:

- and B_i synchronization expression (optional)
- S_i statements (one or more)

The variables v_1, \ldots, v_{m_i} may be referred by B_i and S_i may read/write to them.

Rendezvous: semantics of input statement

Consider the following:

```
in ...
[] O_i(v_i, ..., v_{m_i}) \text{ and } B_i \rightarrow S_i;
...
ni
```

The guard succeeds when O_i is called and B_i is true (or omitted).

Execution of the in statement:

- Delays until a guard succeeds
- If more than one guard succeed, the oldest call is served
- Values are returned to the caller
- The the call- and in statements terminates

Example: bounded buffer (rendezvous)

```
module BoundedBuffer
  op deposit(elem), fetch(result elem);
bodv
  process Buffer {
    elem buf[n];
    int front = 0, rear = 0, count = 0;
    while (true)
      in deposit (item) and count < n ->
            buf[rear] = item; count++;
            rear = (rear+1) \mod n;
        fetch (item) and count > 0 ->
            item = buf[front]; count--:
            front = (front+1) \mod n;
      пi
end BoundedBuffer # Fig. 8.5 of Andrews
```

Example: time server (rendezvous)

```
module TimeServer
 op get_time() returns int;
 op delay(int); # Waketime as argument
 op tick(); # called by the clock interrupt handler
body
 process Timer {
    int tod = 0:
    start timer:
    while (true)
      in get_time() returns time -> time = tod;
      [] delay(waketime) <u>and</u> waketime <= tod -> skip;
      [] tick() -> { tod++; restart timer;
      пi
end TimeServer # Fig. 8.7 of Andrews
```

RPC, rendezvous and message passing

We do now have several combinations:

ir	nvocation	service	effect
C	all	proc	procedure call (RPC)
C	all	in	rendezvous
S	end	proc	dynamic process creation
S	end	in	asynchronous message passing

RPC, rendezvous and message passing

We do now have several combinations:

invocation	service	effect
call	proc	procedure call (RPC)
call	in	rendezvous
send	proc	dynamic process creation
send	in	asynchronous message passing

in addition (not in Andrews)

• asynchronous procedure call, wait-by-necessity, futures

Rendezvous, message passing and semaphores

Comparing input statements and receive:

in
$$O(a_1, \ldots, a_n) \rightarrow v_1 = a_1, \ldots, v_n = a_n$$
 ni \iff receive $O(v_1, \ldots, v_n)$

Comparing message passing and semaphores:

send O() and receive O()
$$\iff$$
 V(O) and P(O)

Example: Bounded buffer (again)

```
module BoundedBuffer
 op deposit(elem), fetch(result elem);
bodv
 elem buf[n];
 int front = 0. rear = 0:
 # local operation to simulate semaphores
 op empty(), full(), mutexD(), mutexF();
 send mutexD(); send mutexF(); # init. "semaphores" to 1
  for [i = 1 \text{ to } n] # init. empty—"semaphore" to n
   send empty();
 proc deposit(item) {
   receive empty(); receive mutexD();
    buf[rear] = item; rear = (rear+1) mod n;
   send mutexD(); send full();
 proc fetch(item) {
    receive full(); receive mutexF();
    item = buf[front]; front = (front+1) mod n;
    send mutexF(); send empty();
end BoundedBuffer # Fig. 8.12 of Andrews
```

The primitive ?O in rendezvous

New primitive on operations, similar to empty(...) for condition variables and channels.

?O means number of pending invocations of operation O.

Useful in the input statement to give priority:

in
$$O_1 \dots -> S_1$$
;
 $[] O_2 \dots$ and $? O_1 == 0 -> S_2$;

Here O_1 has a higher priority than O_2 .

Readers and writers

```
module ReadersWriters
 op read(result types); # uses RPC
 op write(types);
                   # uses rendezvous
body
 op startread(), endread(); # local ops.
  ... database (DB)...;
 proc read(vars) {
    call startread(); # get read access
    ... read vars from DB ...;
   send endread(); # free DB
 process Writer {
    int nr = 0:
    while (true)
      in startread() -> nr++;
      [] endread() \rightarrow nr--;
      [] write(vars) and nr = 0 \rightarrow
           ... write vars to DB ... ;
     пi
end ReadersWriters
```

Readers and writers: prioritize writers

```
module ReadersWriters
  op read (result types); # uses RPC
                   # uses rendezvous
  op write(types);
body
  op startread(), endread(); # local ops.
  ... database (DB)...;
 proc read(vars) {
    call startread(); # get read access
    ... read vars from DB ...;
    send endread(); # free DB
  process Writer {
    int nr = 0:
    while (true)
      <u>in</u> startread() <u>and</u> ?write == 0 -> nr++;
      [] endread() \rightarrow nr--;
      [] write(vars) and nr = 0 \rightarrow
           ... write vars to DB ... ;
      пi
end ReadersWriters
```