
Asynchronous Communication 2

INF4140

22.11.12

Lecture 11

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 1 / 37

Overview: Last time

semantics: histories and trace sets
specification: invariants over histories

global invariants
local invariants
the connection between local and global histories

example: Coin machine
the main program
formulating local invariants

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 2 / 37

Overview: Today

Analysis of send/await statements
Verifying local history invariants
example: Coin Machine

proving loop invariants
the local invariant and a global invariant

example: Mini bank

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 3 / 37

Agent/network systems (Repetition)

We consider general agent/network systems:

Concurrent agents:
with self identity
no variables shared between agents
communication by message passing

Network:
no channels
no FIFO guarantee
no guarantee of successful transmission

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 4 / 37

Programming asynchronous agent systems (Repetition)

Sequential language with statements for sending and receiving:
send statement: send B : m(e)
means that the current agent sends message m to agent B where e is
an (optional) list of actual parameters.
fixed receive statement: await B : m(w)
wait for a message m from a specific agent B , and receive parameters
in the variable list w . We say that the message is then consumed .
open receive statement: await X ?m(w)
wait for a message m from any agent X and receive parameters in w .
(consuming the message). The variable X will be set to the agent that
sent the message.
We may use a choice operator [] to select between alternative
statement lists, starting with receive statements.

Here m is a message name, B and e expressions, X and w variables.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 5 / 37

Local reasoning by Hoare Logic1

We adapt Hoare logic to reasoning about local histories in an agent A:
introducing a local (pseudo) variable h, initialized to empty (ε)

h represents the local history of A
For a send/await statement, we may then define the effect on h.

extending the h with the corresponding event
Local reasoning: We do not know the global invariant

For await: do not know parameter values
For open receive: do not know the sender

Use non-deterministic assignment

x := some

where variable x may be given any (type correct) value

01 Hoare Logic was known as Program Logic (PL) in lecture 5 and 6.
INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 6 / 37

Local invariant reasoning by Hoare Logic

each send statement in A, say send B : m, is treated as

h := (h;A↑B : m)

each fixed receive statement in A, say await B : m(w), where w is a
list of variables, is treated as

w := some ; h := (h;B ↓A : m(w))

here, the usage of w := some expresses that A may receive any
values for the receive parameters
each open receive statement in A, from an arbitrary agent X , say
await X ?m(w), is treated as

X := some ; await X : m(w)

where the usage of X := some expresses that A may receive the
message from any agent
INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 7 / 37

Derived Hoare Rules for send and receive

Non-deterministic assignment has the following rule:

{∀x . Q} x := some {Q}
We may then derive rules for the introduced send /await statements:
Derived rule for send:

{Qh←h;A↑B:m} send B : m {Q}
Derived rule for receive from specific agent:

{∀w . Qh←h;B↓A:m(w)} await B : m(w) {Q}
Derived rule for receive from unknown agent:

{∀w ,X . Qh←h;X↓A:m(w)} await X ?m(w) {Q}
As before, A is the current agent/object, and h the local history. We
assume that neither B nor X occur in w , and that w is a list of distinct
variables.
Note: No shared variables are used. Therefore, no interference, and Hoare
reasoning can be done as usual in the sequential setting!

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 8 / 37

Hoare rules for local reasoning

The Hoare rule for non-deterministic choice ([]) is

{P1} S1 {Q} {P2} S2 {Q}
{P1 ∧ P2} (S1[]S2) {Q}

We may also reason backwards over if statements:

{P1} S1 {Q} {P2} S2 {Q}
{if b then P1 else P2} if b then S1 else S2 fi {Q}

where the precondition if b then P1 else P2 is an abbreviation for
(b ⇒ P1) ∧ (¬b ⇒ P2)
Remark: The assignment axiom is valid: {Q x←e} x := e {Q}
Remark: If there are no parameters to a fixed receive statement, say
await B : m, we may simplify the Hoare Rule (message name m):

{Qh←h;(B↓A:m)} await B : m {Q}

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 9 / 37

Example: Coin Machine

Consider an agent C which changes “5 krone” coins and “1 krone” coins
into “10 krone” coins. It receives five and one messages and sends out ten
messages as soon as possible, in the sense that the number of messages
sent out should equal the total amount of kroner received divided by 10.
We imagine here a fixed user agent U, both producing the five and one
messages and consuming the ten messages. The code of the agent C is
given below, using b (balance) as a local variable initialized to 0.

while truedo
while b<10 do

(await U:five; b:=b+5)
[](await U:one; b:=b+1)

od
send U:ten; b:=b-10

od

Here, the choice operator, [], selects the first enabled branch, (and makes
a non-deterministic choice if both branches are enabled).

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 10 / 37

Coin Machine: Events

Invariants may refer to the local history h, which is the sequence of events
visible to C that have occurred so far. The events visible to C are:

U ↓C : five −− C consumes the message “five”
U ↓C : one −− C consumes the message “one”
C ↑U : ten −− C sends the message “ten”

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 11 / 37

Coin Machine Example: Loop Invariants

Loop invariant for the outer loop:

OUTER : sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 5

where sum (the sum of values in the messages) is defined as follows:

sum(ε) = 0
sum(h; (... : five)) = sum(h) + 5
sum(h; (... : one)) = sum(h) + 1
sum(h; (... : ten)) = sum(h) + 10

Loop invariant for the inner loop:

INNER : sum(h/ ↓) = sum(h/↑) + b ∧ 0 ≤ b < 15

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 12 / 37

Hoare analysis: Inner loop

Prove that INNER is preserved by the body of the inner loop.
Backward construction gives:
while b<10 do {b < 10 ∧ INNER}
{(INNER b←(b+5)) h←h;U↓C :five ∧ (INNER b←(b+1)) h←h;U↓C :one}
(await U:five; {INNER b←(b+5)}
b:=b+5)

[] (await U:one; {INNER b←(b+1)}
b:=b+1)

{INNER}
od

Must prove the implication:

b < 10 ∧ INNER⇒ (INNER b←(b+5)) h←h;U↓C :five ∧ (INNER b←(b+1)) h←h;U↓C :one

(details left as an exercise)

Note: From the precondition INNER for the loop, we have INNER ∧ b ≥ 10 as
the postcondition to the inner loop.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 13 / 37

Hoare analysis: Outer loop

Prove that OUTER is preserved by the outer loop body.
Backward construction gives:

while true do {OUTER}
{INNER}
while b<10 do ...od {INNER ∧ b ≥ 10}
{(OUTER b←(b−10)) h←h;C↑U:ten}
send U:ten;
{OUTER b←(b−10)}
b:=b-10
{OUTER}

od
Verification conditions:
•OUTER⇒ INNER, and
•INNER ∧ b ≥ 10⇒ (OUTER b←(b−10)) h←h;C↑U:ten
•OUTER holds initially since h = ε ∧ b = 0⇒ OUTER

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 14 / 37

Local history invariant

For each agent (A):
Predicate IA(h) over the local communication history (h)
Describes the interaction between A and the surrounding agents
Must be maintained by all history extensions in A
Last week: Local history invariants for the different agents may be
composed, giving a global invariant

Verification idea:
Ensure that IA(h) holds initially (i.e., with h = ε)
Ensure that IA(h) holds after each send/await statement
(Assuming that IA(h) holds before each such statement)

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 15 / 37

Local history invariant reasoning by Hoare logic

may use Hoare logic to prove properties of the code in agent A
for instance loop invariants
The conditions may refer to the local state v (a list of variables) and
the local history h, e.g., Q(v , h).

The local history invariant IA(h):
must hold after each send/receive
if Hoare reasoning gives the condition Q(v , h) immediately after a
send or receive statement, we basically need to ensure:

Q(v , h)⇒ IA(h)

we may assume that the invariant is satisfied immediately before each
send/receive point.
we may also assume that the last event of h is the send/receive event.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 16 / 37

Proving the local history invariant

Let IA(h) be the local invariant of an agent A. The rule and comments on
the previous foil can be formulated as the following verification conditions
for each send/await statement in A:

send B : m:

(h = (h′;A↑B : m) ∧ IA(h′) ∧ Q(v , h))⇒ IA(h)

Q is the condition immediately after the send statement
assumption h = (h′;A↑B : m): the history (after the statement) ends
with the send event
assumption IA(h′): the invariant holds before the send statement

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 17 / 37

Proving the local history invariant (cont.)

await B : m(w):

(h = (h′;B ↓A : m(w)) ∧ IA(h′) ∧ Q(v , h))⇒ IA(h)

where Q is the condition just after the receive statement.
await X ?m(w):

(h = (h′;X ↓A : m(w)) ∧ IA(h′) ∧ Q(v , h))⇒ IA(h)

where Q is the condition just after the receive statement.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 18 / 37

Coin machine example: local history invariant

For the coin machine C , consider the local history invariant IC (h) from last
week:

IC (h) = 0 ≤ sum(h/↓)− sum(h/↑) < 15

Consider the statement send U : ten in C
Hoare analysis of the outer loop gave the condition OUTER b←(b−10)
immediately after the statement
The history ends with the event C ↑U : ten
Verification condition:

h = h′; (C ↑U : ten) ∧ IC (h′) ∧ OUTER b←(b−10) ⇒ IC (h)

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 19 / 37

Coin machine example: local history invariant

Verification condition (details):
h = h′; (C ↑U : ten) ∧ IC (h′) ∧ OUTER b←(b−10) ⇒ IC (h)

by definitions IC and OUTER:
(h = h′; (C ↑U : ten) ∧ 0 ≤ sum(h′/↓)− sum(h′/↑) < 15 ∧ sum(h/↓) = sum(h/↑) + b − 10
∧ 0 ≤ b − 10 < 5)⇒ 0 ≤ sum(h/↓)− sum(h/↑) < 15

by h = h′; (C ↑U : ten) and def. of sum:
(0 ≤ sum(h′/↓)− sum(h′/↑) < 15 ∧ sum(h′/↓) = sum(h′/↑) + 10+ b − 10
∧ 0 ≤ b − 10 < 5)⇒ 0 ≤ sum(h′/↓)− sum(h′/↑)− 10 < 15

now we have b = sum(h′/↓)− sum(h′/↑):
0 ≤ b < 15 ∧ 0 ≤ b − 10 < 5⇒ 0 ≤ b − 10 < 15

which is trivial since b − 10 < 5⇒ b − 10 < 15

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 20 / 37

Coin Machine Example: Summary

Correctness proofs (bottom-up):
code
loop invariants (Hoare analysis)
local history invariant
verification of local history invariant based on the Hoare analysis

Note: The []-construct was useful for programming service-oriented
systems, and had a simple proof rule.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 21 / 37

Example: “Mini bank” (ATM): Informal specification

Client cycle: The client C is making these messages
put in card, give pin, give amount to withdraw, take cash, take card

Mini Bank cycle: The mini bank M is making these messages
to client: ask for pin, ask for withdrawal, give cash, return card

to central bank: request of withdrawal
Central Bank cycle: The central bank B is making these messages
to mini bank: grant a request for payment, or deny it
There may be many mini banks talking to the same central bank, and there
may be many clients using each mini bank (but the mini bank must handle
one client at a time).

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 22 / 37

Mini bank example: Global histories

Consider a client C , mini bank M and central bank B :
Example of successful cycle:
[C lM : card_in(n),M lC : pin,C lM : pin(x),

M lC : amount,C lM : amount(y),M lB : request(n, x , y),B lM : grant,
M lC : cash(y),M lC : card_out]

where n is name, x pin code, and y cash amount, provided by clients.
Example of unsuccessful cycle:
[C lM : card_in(n),M lC : pin,C lM : pin(x),

M lC : amount,C lM : amount(y),M lB : request(n, x , y),B lM : deny ,
M lC : card_out]

Notation: AlB : m denotes the sequence A↑B : m,A↓B : m

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 23 / 37

Mini bank example: Local histories (1)

From the global histories above, we may extract the corresponding local
histories:
The successful cycle:

Client: [C ↑M : card_in(n),M ↓C : pin,C ↑M : pin(x),
M ↓C : amount,C ↑M : amount(y),M ↓C : cash(y),M ↓C : card_out]

Mini Bank: [C ↓M : card_in(n),M ↑C : pin,C ↓M : pin(x),
M ↑C : amount,C ↓M : amount(y),M ↑B : request(n, x , y),B ↓M : grant,
M ↑C : cash(y),M ↑C : card_out]

Central Bank: [M ↓B : request(n, x , y),B ↑M : grant]

The local histories may be used as guidelines when implementing the different
agents.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 24 / 37

Mini bank example: Local histories (2)

The unsuccessful cycle:

Client: [C ↑M : card_in(n),M ↓C : pin,C ↑M : pin(x),
M ↓C : amount,C ↑M : amount(y),M ↓C : card_out]

Mini Bank: [C ↓M : card_in(n),M ↑C : pin,C ↓M : pin(x),
M ↑C : amount,C ↓M : amount(y),M ↑B : request(n, x , y),B ↓M : deny ,
M ↑C : card_out]

Central Bank: [M ↓B : request(n, x , y),B ↑M : deny]

Note: many other executions possible, say when clients behaves differently,
difficult to describe all at a global level (remember the formula of week 1).

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 25 / 37

Mini bank example: implementation of Central Bank

Sketch of simple central bank.
Program variables:
pin –- array of pin codes, indexed by client names
bal –- array of account balances, indexed by client names

X : Agent, n: Client_Name, x: Pin_Code, y: Natural
Code:
while true do

await X?request(n,x,y);
if pin[n]=x and bal[n]>y

then bal[n]:=bal[n]-y; send X:grant;
else send X:deny

fi
od
Note: the mini bank X may vary with each iteration.
Note: no absolute deadlock, but concurrent requests not allowed.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 26 / 37

Mini bank example: Central Bank (B)

Consider the (extended) regular expression CycleB defined by:

[X ↓B : request(n, x , y), [B ↑X : grant | B ↑X : deny] some X , n, x , y]∗

with | for choice, [...]∗ for repetition
Defines cycles: request answered with either grant or deny
notation [regExp some X , n, x , y]∗ means that the values of X , n, x ,
and y are fixed in each cycle, but may vary from cycle to cycle.

Notation: Given an extended regular expression R .
Let h is R denote that h matches the structure described by R .
Example (for events a, b, and c):

we have (a; b; a; b) is [a, b]∗

we have (a; c ; a; b) is [a, [b|c]]∗

we do not have (a; b; a) is [a, b]∗

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 27 / 37

Loop invariant of Central Bank (B):
Let CycleB denote the regular expression:

[X ↓B : request(n, x , y), [B ↑X : grant | B ↑X : deny] some X , n, x , y]∗

Loop invariant: h is CycleB
Proof of loop invariant (entry condition): Must prove that it is
satisfied initially: ε isCycleB , which is trivial.
Proof of loop invariant (invariance):
while true do {h isCycleB}

await X?request(n,x,y);
if pin[n]=x and bal[n]>y

then bal[n]:=bal[n]-y; send X:grant;
else send X:deny

fi
{h isCycleB}
od

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 28 / 37

Hoare analysis of central bank loop

Backward construction of a precondition for the loop body:
while true do{h is CycleB}
{∀X , n, x , y . if pin[n] = x ∧ bal [n] > y

then (h;X ↓B : request(n, x , y);B ↑X : grant) is CycleB
else (h;X ↓B : request(n, x , y);B ↑X : deny) is CycleB}

await X?request(n,x,y);
{if pin[n] = x ∧ bal [n] > y then (h;B ↑X : grant) is CycleB

else (h;B ↑X : deny) is CycleB}
if pin[n]=x and bal[n]>y then
{(h;B ↑X : grant) is CycleB}
bal[n]:=bal[n]-y;
{(h;B ↑X : grant) is CycleB}
send X:grant;

else
{(h;B ↑X : deny) is CycleB}
send X:deny

fi
{h is CycleB}
od

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 29 / 37

Hoare analysis of central bank loop (cont.)

Verification condition:
h isCycleB⇒∀X , n, x , y . if pin[n] = x∧bal [n] > y
then (h;X ↓B : request(n, x , y);B ↑X : grant) isCycleB
else (h;X ↓B : request(n, x , y);B ↑X : deny) isCycleB
where CycleB is

[X ↓B : request(n, x , y), [B ↑X : grant | B ↑X : deny] some X , n, x , y]∗

the condition follows by the general rule (regExp R and events a and b):

h is R∗ ∧ (a; b) is R ⇒ (h; a; b) is R∗

since (X ↓B : request(n, x , y);B ↑X : grant) isCycleB
and (X ↓B : request(n, x , y);B ↑X : deny) isCycleB

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 30 / 37

Local history invariant for the central bank (B)

CycleB is

[X ↓B : request(n, x , y), [B ↑X : grant | B ↑X : deny] some X , n, x , y]∗

Define the history invariant for B by:

h ≤ CycleB

Let h ≤ R denote that h is a prefix of the structure described by R .
intuition: if h ≤ R we may find some extension h′ such that
(h; h′) is R
h is R ⇒ h ≤ R (but not vice versa)
(h; a) is R ⇒ h ≤ R
Example: (a; b; a) ≤ [a, b]∗

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 31 / 37

Central Bank: Verification of the local history invariant

h≤CycleB
As before, we need to ensure that the history invariant is implied after each
send/receive statement.

Here it is enough to assume the conditions after each send/receive
statement in the verification of the loop invariant

This gives 2 proof conditions:
1. after send grant/deny (i.e. after fi)
h isCycleB⇒ h≤CycleB which is trivial.
2. after await request
if . . . then (h;B ↑X : grant) isCycleB else (h;B ↑X : deny) isCycleB⇒ h≤CycleB
which follows from (h; a) isR⇒ h≤R.
Note: We have now proved that the implementation of B satisfies the local
history invariant, h ≤ CycleB .

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 32 / 37

Mini bank example: Local invariant of Client (C)

CycleC :
[C ↑X : card_in(n)
| X ↓C : pin,C ↑X : pin(x)
| X ↓C : amount,C ↑X : amount(y ′)
| X ↓C : cash(y) | X ↓C : card_out some X , y , y ′]∗

History invariant:
hC ≤ CycleC

Note: The values of C , n and x are fixed from cycle to cycle.
Note: The client is willing to receive cash and cards, and give card, at any time,
and will respond to pin, and amount messages from a mini bank X in a sensible
way, without knowing the protocol of the particular mini bank. This is captured
by | for different choices.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 33 / 37

Mini bank example: Local invariant for Mini bank (M)

CycleM :
[C ↓M : card_in(n),M ↑C : pin,C ↓M : pin(x),

M ↑C : amount,C ↓M : amount(y),
if y ≤ 0 then ε else
M ↑B : request(n, x , y), [B ↓M : deny | B ↓M : grant,M ↑C : cash(y)] fi ,
M ↑C : card_out some C , n, x , y]∗

History invariant:
hM ≤ CycleM

Note: communication with a fixed central bank. The client may vary with each
cycle.
Note: deadlock if a client does not respond properly.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 34 / 37

Mini bank example: obtaining a global invariant

Consider the parallel composition of C ,B,M. Global invariant:
legal(H) ∧ H/αC ≤ CycleC ∧ H/αM ≤ CycleM ∧ H/αB ≤ CycleB
Assuming no other agents, this invariant may almost be formulated by:
H ≤ [C lM : card_in(n),M lC : pin,C lM : pin(x),

M lC : amount,C lM : amount(y),
if y ≤ 0 then M lC : card_out
else M lB : request(n, x , y), [B lM : deny ,M lC : card_out
| B lM : grant,M ↑C : cash(y), [M ↓C : cash(y) ||| M lC : card_out]] fi
some n, x , y]∗

where ||| gives all possible interleavings. However, we have no guarantee that the
cash and the card events are received by C before another cycle starts. Any next
client may actually take the cash of C .
For proper clients it works OK, but improper clients may cause the Mini Bank to
misbehave. Need to incorporate assumptions on the clients, or make an improved
mini bank.

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 35 / 37

Improved mini bank based on a discussion of the global
invariant

The analysis so far has discovered some weaknesses:

The mini bank does not know when the client has taken his cash, and it may even
start a new cycle with another client before the cash of the previous cycle is
removed. This may be undesired, and we may introduce a new event, say
cash_taken from C to M, representing the removal of cash by the client. (This
will enable the mini bank to decide to take the cash back within a given amount of
time.)

A similar discussion applies to the removal of the card, and one may introduce a
new event, say card_taken from C to M, so that the mini bank knows when a
card has been removed. (This will enable the mini bank to decide to take the card
back within a given amount of time.)

A client may send improper or unexpected events. These may be lying in the
network unless the mini bank receives them, and say, ignores them. For instance
an old misplaced amount message may be received in (and interfere with) a later
cycle. An improved mini bank could react to such message by terminating the
cycle, and in between cycles it could ignore all messages (except card_in).

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 36 / 37

Summary

Concurrent agent systems, without network restrictions (need not be FIFO,
message loss possible).

Histories used for semantics, specification and reasoning
correspondence between global and local histories, both ways
parallel composition from local history invariants
extension of Hoare logic with send/receive statements
avoid interference, may reason as in the sequential setting
Bank example, showing

global histories may be used to exemplify the system, from which we
obtain local histories, from which we get useful coding help
specification of local history invariants
verification of local history invariants from Hoare logic + verification
conditions (one for each send/receive statement)
composition of local history invariants to a global invariant

INF4140 (22.11.12) Asynchronous Communication 2 Lecture 11 37 / 37

