Active Objects

INF4140

29.11.11

Lecture 12

INF4140 (29.11.11) Active Objects Lecture 12 1/27

Aims for this lecture

About distributed object-oriented systems and Introduction to Creol

@ Consider the combination of OO, concurrency, and distribution
@ Understanding active objects
e interacting by asynchronous method calls

@ A short introduction into (a variant of) Creol using small example
programs

Note: Inheritance and dynamic object creation not considered here.

INF4140 (29.11.11) Active Objects Lecture 12 2/27

Open Distributed Systems

@ Consider systems of communicating software units ‘

@ Distribution: geographically spread components

o Networks may be asynchronous and unstable
e Component availability may vary over time

@ Openness : encapsulation

o Implementation of other objects is not
necessary known.

o Interaction with other objects is
through interfaces.

@ ODS dominate critical infrastructure in society:
bank systems, air traffic control, etc.

@ ODS: complex, error prone, and robustness is poorly
understood

INF4140 (29.11.11) Active Objects Lecture 12 3/27

Challenges with OO languages for

Modern systems are often large and complex, with distributed,
autonomous units connected through different kinds of networks.

@ OO + distribution
efficient interaction (passive/active waiting),

@ OO + concurrency
synchronization, blocking, deadlock

@ OO + asynchronous communication
messages on top of OO or method-based communication?
problems with RPC/RMI
@ OO + openness
restricted knowledge of other objects
@ OO + scalability
management of large systems

INF4140 (29.11.11) Active Objects Lecture 12 4/27

Active and Passive Objects

Passive objects

@ Execute their methods in the caller’s thread of control (e.g., Java)
@ In multithreaded applications, must take care of synchronization
@ Shared variable interference for non-synchronized methods

@ If two objects call the same object, race condition may occur

Active (or concurrent) objects
@ Execute their methods in their own thread of control (e.g., Actors)
@ Communication is asynchronous
@ Call and return are decoupled (future variables)
@ Cooperative multitasking, specified using schedulers

INF4140 (29.11.11) Active Objects Lecture 12 5/27

Creol: A Concurrent Object Model

@ OO modeling language that targets open distributed systems

@ All objects are active (or concurrent), but may receive requests
e Need easy way to combine active and passive/reactive behavior

@ We don’t always know how objects are implemented

e Separate specification (interface) from implementation (class)
o Object variables are typed by interface, not by class

@ No assumptions about the (network) environment

@ Communication may be unordered
e Communication may be delayed
e Execution should adapt to possible delays in the environment

@ Synchronization decided by the caller
e Method invocations may be synchronous or asynchronous

INF4140 (29.11.11) Active Objects Lecture 12 6/27

Interfaces as types

@ Object variables (pointers) are typed by interfaces
(other variables are typed by data types)

@ Mutual dependency: An interface may require a cointerface

@ Only objects of cointerface type may call declared methods
e Explicit keyword caller (identity of calling object)
e Supports callbacks to the caller through the cointerface

@ All object interaction is controlled by interfaces

o No explicit hiding needed at the class level
o Interfaces provide behavioral specifications
e A class may implement a number of interfaces

@ Type safety: no “method not understood” errors

INF4140 (29.11.11) Active Objects Lecture 12 7127

Interfaces

@ Declares a set of method signatures
@ With cointerface requirement

interface / inherits / begin

with J MidSig // cointerface J
end

@ Method signatures (MtdSig) of the form:
op m(in x:/outy:]
e method mame m with in-parameters x and out-parameters y

e Parameter types may also range over data types (Bool, Int,
String. . .)

INF4140 (29.11.11) Active Objects Lecture 12 8/27

Interfaces: Example

@ Consider the mini bank example from last week
@ We have Client, MiniBank, and CentralBank objects
@ Clients may support the following interface:

interface Client begin
with MiniBank
op pin(out p : Int)
op amount(out a : Int)
end

@ only MiniBank objects may call the pin and amount methods

INF4140 (29.11.11) Active Objects Lecture 12 9/27

Interfaces: Example (cont.)

MiniBank and CentralBank interfaces:

interface MiniBank begin
with Client
op withdraw(in name : String out result : Bool)
end

interface CentralBank begin
with MiniBank
op request(in name : String, pin : Int, amount : Int
out result : Bool)
end

INF4140 (29.11.11) Active Objects Lecture 12 10/27

Asynchronous Communication Model

ol 02

@ Object o1 calls some
l\ method on object 02
@ In 02: Arbitrary delay

after invocation arrival
and method startup

@ In o1: Arbitrary delay
after completion arrival

/’ and reading the return

?

INF4140 (29.11.11) Active Objects Lecture 12 11/27

Main ideas of Creol: Programming perspective

Main ideas:
@ Asynchronous communication
@ Avoid undesired inactivity
e Other processes may execute while some process waits for a reply
@ Combine active and reactive behavior
In the language, this is achieved by statements for
@ asynchronous method calls and
@ processor release points

Note: Relase points enable interleaving of active and reactive code
Note: No need for signaling / notification

INF4140 (29.11.11) Active Objects Lecture 12 12/27

Execution inside a Creol Object

@ Concurrent objects encapsulate a processor

@ Execution in objects should adapt to environment delays

@ At most one active process at a time

@ Implicit scheduling between internal processes inside an object

' Object

/_/
A1.41 SN .A1.J

(STATE

INF4140 (29.11.11) Active Objects Lecture 12 13/27

Internal Processes in Concurrent Objects

@ Process (method activation): code + local variable bindings (local
state)

@ Object: state + active process + suspended processes
@ Asynchronous invocation: t'o.m(In)
e The label t identifies the call
Reading the result: {7(Out)
@ Processor release points
e Declared by await statements: await guard
@ QGuards can be
e 1?
@ Boolean condition
@ and also method call

e If a guard evaluates to false the active process is suspended
e If no process is active, any suspended process may be
activated if its guard evaluates to true.

INF4140 (29.11.11) Active Objects Lecture 12 14/27

Statements for object communication

@ Objects communicate through method invocations only
@ Different ways to invoke a method m

@ Decided by caller — not at method declaration site

@ Guarded invocation:

tlo.m(In); ... await t7; t?(Out)

@ Label free abbreviations for standard patterns:
e o.m(In; Out) = tlo.m(In); t?(Out) — synchronous call
e await 0.m(/n; Out) = t'o.m(In); await t?; t?(Out)
e lo.m(In) — no reply needed
@ Internal calls: m(/n; Out), t'm(In), 'm(In)
Internal calls may also be asynchronous/guarded

INF4140 (29.11.11) Active Objects Lecture 12 15/27

Creol syntax

Syntactic categories. Definitions.

t in Label gu=9|t7[g1 NG
g in Guard p:=o.m|m
p in MidCall S:=s|sS
S in ComList s ::= skip | begin S end | S;0IS;
S in Com | X := e| x := new classname(e)
X in VarList | if bthen S; else S, end
m in Mtd | 1p(e) | tip(e) | t2(x) | p(e; x)
| await g | await p(e; x)

0 in ObjExpr | release
b in BoolExpr

@ Omit the functional language for expressions e here:
this, caller, strings, integers, lists, sets, maps, etc

INF4140 (29.11.11) Active Objects Lecture 12 16/27

Example: CentralBank implementation

class Bank implements CentralBank begin
var pin -- pin codes, indexed by name
var bal -- balances, indexed by name

with MiniBank
op request(in name : String, pin : Int, amount : Int
out result : Bool) ==
if (pin[name] = pin && bal[name] >= amount)
then result := true
else result := false end
end

INF4140 (29.11.11) Active Objects Lecture 12 17/27

Example: MiniBank implementation

class MiniBank(bank : CentralBank) implements MiniBank begin

with Client
op withdraw(in name : String out result : Bool) ==
var amount : Int, pin : Int;
caller.pin(;pin); caller.amount (;amount)
await bank.request(name, pin, amount; result)

end

@ method calls caller.pin(...) and caller.amount(...) are type
safe by cointerface requirements

@ await statement: passive waiting for reply from CentralBank

INF4140 (29.11.11) Active Objects Lecture 12 18/27

Example: Client implementation

Optimistic client:

class Person(m : MiniBank) implements Client begin
var name : String, pin : Int;

Op run == success : Bool;
await m.withdraw(name;success);
if (success == false) then 'run end

with MiniBank
op pin(out p : Int) == p := pin
op amount(out a : Int) == a := 1000
end

@ Assuming communication with a fixed minibank m

INF4140 (29.11.11) Active Objects Lecture 12 19/27

Main ideas of Creol: Programming perspective

concurrent objects (each with its own virtual processor)

a notion of asynchronous methods calls, avoids blocking,
using processor release points

high level process control

@ no explicit signaling/notification
e busy waiting avoided!

openness by a notion of multiple interfacing

abstraction by behavioral interfaces

type safe call-backs due to cointerfaces

INF4140 (29.11.11) Active Objects Lecture 12 20/27

Example: Buffer

interface Buffer begin
with Producer op put(in x : Int)
with Consumer op get(out x : Int)
end

class OneSlotBuffer implements Buffer begin
var value : Int, full : Bool;
op init == full := false
with Producer
op put(in x : Int) == await —full; value := x; full := true
with Consumer
op get(out x : Int) == await full; x := value; full :
end

false

@ init: initialization code executed at object creation

INF4140 (29.11.11) Active Objects Lecture 12 21/27

Example: Buffer (cont.)

lllustrating alternation between active and reactive behavior

class Consumer(buf: Buffer) implements Consumer begin
var sum : Int := 0O;
Op run == var j : Int;
while true do await buf.get(;j); sum := sum + j end
with Any op getSum(out s : Int) == s := sum
end

@ Callto buf.get:

@ Asynchronous
e await: processor release

@ Incoming calls to getSum can be served while waiting for reply from
buf

@ Interface Any: supertype of all interfaces
e Any object can call getSum

INF4140 (29.11.11) Active Objects Lecture 12 22/27

Readers/Writers example (Simple implementation)

interface RW

begin with RWClient
op OR — open read
op OW — open write
op CR —close read
op CW — close write

end

class RW implements RW
begin var r: Int:=0; var w: Int:=0;
with RWClient
op OR == await w=0; r:= r+1
op OW == await w=0 and r=0; w:= w+1
op CR ==r:=r-1
op CW == w:= w-1
end
Note: A client may do asynchronous calls to OR/OW and synchronous
calls to CR/CW.

INF4140 (29.11.11) Active Objects Lecture 12 23/27

Readers/Writers example (version 2)

DataBase) implements RW begin
Writer := null,

class RW(db :
var readers : Set[Reader] := (), writer :
pr : Int := 0; // number of pending calls to db.read
with Reader
= null; readers := readers U caller

op OR == await writer
op CR == readers := readers \ caller
Int) ==

op read(in key : Int out result

await caller € readers;
= pr + 1; await db.read(key;result); pr := pr - 1;

pr :
with Writer
op OW == await (writer = null & readers = () & pr = 0);
writer := caller
:= null

op CW == await caller = writer; writer

op write(in key : Int, value : Int) ==
await caller = writer; db.write(key,value);

end
INF4140 (29.11.11) Active Objects Lecture 12 24 /27

RW example, remarks (version 2)

@ read and write operations on database may be declared with
cointerface RW

@ Weaker assumptions about Reader and Writer behavior than in
the first version

e Here we actually check that only registered readers/writers do
read/write operations on the database

@ The database is assumed to store integer values indexed by key
@ Counting the number of pending calls to db.read (variable pr)
@ A reader may call CR before all read invocations are completed

@ For writing activity, we know that there are no pending calls to
db.write when writer is null. Why?

@ The solution is unfair: writers may starve

@ Still, after completing 0w, we assume that writers will eventually
call cw. Correspondingly for readers

INF4140 (29.11.11) Active Objects Lecture 12 25/27

Summary: Active Objects

@ Passive objects usually execute their methods in the thread of
control of the caller (Java)

@ In multithreaded applications, we must take care of proper
synchronisation

@ Active objects execute their methods in their own thread of control
@ Communication is asynchronous

@ synchronous communication possible by means of asynchronous
communication primitives

@ Call and return are decoupled by the use of labels
@ Usually, active objects use cooperative multitasking.

@ Cooperative multitasking is specified using schedulers. Our
scheduler will just randomly pick a next process.

INF4140 (29.11.11) Active Objects Lecture 12 26/27

PMA Group Courses

Spring:

@ INF3230 - Formal modeling and analysis of communicating systems
rewriting logic - language and tool Maude

@ INF5140/INF9140 - Specification and verification of parallel systems. Spring °09, ’11, ’13, ..
Automatic verification using model checking techniques

@ INF5906/INF9906 - Selected topics in static analysis. Spring 10, '12, '14, ..
analysis of programs at compile time

Fall:
@ INF5130/INF9130 - Selected topics in rewriting logic (09, 11,13, ..)

Each semester:

@ INF5160 - Seminar in Computer Science ("Formal methods seminar")

INF4140 (29.11.11) Active Objects Lecture 12 27127

	Interfaces
	Programming
	Inside the object
	Summary Active Objects
	courses

