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 UNIVERSITY OF OSLO 
 
 Faculty of Mathematics and Natural Sciences 
 
 

Exam: INF 4300 – Digital image analysis           
Date: Friday December 12, 2008  
Exam hours:       14.30-17.30 
Number of pages:        7 pages plus 1 page enclosure 
Enclosures: 1 sheet containing plots   
Allowed aid:                Calculator 
 
 
 

• Read the entire exercise text before you start solving the exercises. Please 
check that the exam paper is complete. If you lack information in the exam 
text or think that some information is missing, you may make your own 
assumptions, as long as they are not contradictory to the “spirit” of the 
exercise. In such a case, you should make it clear what assumptions you 
have made. 
 

• Please note that all parts of the exercises have equal weight. You should 
spend your time in such a manner that you get to answer all exercises 
shortly. If you get stuck on one question, move on to the next question. 
 

• Some of the questions are based on printed figures or plots included in the 
exam text. An extra copy of this sheet is included at the end of the exam 
text. Please draw your solution on this sheet, mark it with your candidate 
number and include it in your solution. 
 

• Your answers should be short, typically 1-3 sentences or a sketch should be 
sufficient. 

 
Good luck!! 
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Exercise 1. Hough transform 
 

a) What kind of  preprocessing is normally done before applying the Hough transform?  
 

 
b) The (r,θ)-representation is given by r = x cos(θ) + y sin(θ). Let N be the number of 

foreground pixels in the preprocessed input image. Justify/explain that the number of 
required operations, thus processing time, depends on N. 

 
c) Explain briefly how Random Hough transform works. 

 
 

 

Exercise 2. Morphology 
 

a) How can edge detection in a binary image be computed using morphology? Suggest 
one possible method. 

 
b) You are given the image 

 
 

And a flat, plus-shaped structuring element: 
1

1 1 1
1

 

  
Compute the output image after applying grey-level erosion of the image with the 
structuring element.  Assume that the value in the output image should be 0 in 
positions where the structure element is partly outside the image.  

 

Exercise 3. Feature extraction 
 

a) Assume that we have a binary image f(x,y).  A general discrete moment is defined as  
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How do you compute the center of mass  and  from this? 
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b) Central moments are defined as 
∑∑ −−=
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 Show that μ10=0 
 

c) You are given the object below, where the object pixels are black. Compute the chain 
code for this object. Use the code table given below, and start with the top left object 
pixel. Search in a clockwise direction.  

 
     
     
     
     
     

 

 
 

d) In general, the chain code will depend on the starting point. How can you make the 

code independent of the starting point?  

Exercise 4. Texture 
 

When measuring texture in an image, one must choose the order of the texture descriptor. 
 

a)  Higher order texture descriptors are more complex to calculate, but still highly 
useful. Explain briefly the reasons motivating the use of higher order descriptors. 

 
 
 

Gray level co-occurrence matrices is a way of measuring texture. 
 

b) Describe in short how to calculate a GLCM for an entire image. Explain the necessary 
concepts, using a sketch if you find it useful.  

 
c) Does the number of graylevels in the image influence this measure? If so, how? 

 
 

d) Does GLCM represent a rotation-invariant texture measure? If not, describe how you 
would  handle that. 
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e) From the GLCM, many scalar texture measures can be derived. In the following two 
of these measures are given. Explain what type of characteristics of texture they 
measure.  
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f)  

For the following texture a coocurrence matrix is calculated (ignore problems with the 
edge pixels, i.e., do not evaluate coocurrences across the edges) 
 
 

 
1 3 2 3 2 2 
3 2 2 2 2 2 
2 2 3 2 2 1 
1 2 2 1 1 2 
2 3 3 2 1 3 
3 3 3 3 1 2 

 
The coocurrence matrix given h=(i,j) is 

 
 
 

 1 2 3
1 1 2 2
2 3 8 3
3 1 3 2

 
 

What is h? 
1. (0,1) 
2. (1,0) 
3. (1,1) 
4. (1,-1) 
5. None of the above 

 

Exercise 5. Classification using Bayes rule 
 

Remember that, when assuming a 2D Gaussian distribution, the point probability of a 
point x=[x1, x2]T can be written on the form  

 

i 

j 
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where the probability distribution function takes as parameters the vector µ=[µ1, µ2]T 

and a matrix ∑. Classification can be done by assigning a point to the class having the 
highest probability (i.e., the highest function f(x)). Any function based on a 
monotonous transform from the probability will give the same classification result, 
and is called discriminant function. By taking the logarithm of the above expression, a 
discriminant function can be created. 

 
Assume two normally distributed classes with parameters 
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The a priori probabilies for both classes are equal.  
  

 
 
 

a) Sketch the class means in a plot 
 

b) Sketch the covariance matrices in the same plot 
 

c)  You are given the data points listed below. Insert the points in your plot. Classify 
each point according to the classifier specified above. 
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d) Calculate the decision boundary. 
 

e) Sketch the decision boundary in the plot. 
 

 
 

f) Consider the datasets in figures below, A and B. In each of these datasets there are 
two classes, ’+’ and ’o’. Each class has the same number of points. Each data point 
has two real valued features, the X and Y coordinates.  For both of these datasets, we 
want to design a Bayes classifier assuming Gaussian distributed data . The covariance 
matrices are not equal across classes, but they are diagonal, on the form Σj=σ2I.  
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Given these assumptions, sketch the resulting decision boundaries in both cases. If the 
classifier breaks down, explain. 

 
 

Exercise 6. Knearest neighbor classification  
 

In the following questions you will consider a k-nearest neighbor classifier using 
Euclidean distance metric on a binary classification task. We assign the class of the 
test point to be the class of the majority of the k nearest neighbors. Note that a point 
can be its own neighbor. 

 
 
 

a) In the figure, sketch the 1-nearest neighbor decision boundary for this dataset. 
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b) If you try to classify the entire training dataset using a kNN classifier, what value of k 
will minimize the error for this dataset? What is the resulting training error? 
 

 
c) What happens if you use a very large k on this dataset? Why might too small values of 

k also be bad? 
 

d) What value of k minimizes leave-one-out cross-validation error for this dataset? For 
any reasonable choice of k, the resulting minimal error is 4/14.  
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Candidate number:     

Enclosure – sketch your answers here     

Exercise 6. Classification using Bayes rule  

 

 

Exercise 7. Knearest neighbor classification  

 

 


