

- in the sense of minimizing the within-class pattern variability while enhancing the between-class variability".
- Within-class pattern variability: variance between objects belonging to the same class.
- Between-class pattern variability: variance between objects from different classes.

ABCDEFGHIJ

F05 13.10.2010

Classifier design also involves feature selection

• Given a training set of a certain size,

in image classification!

- selecting the best subset out of a large feature set.

Careful selection of features is the most important step

the dimensionality of the feature vector must be limited.

4

Describing the shape of a segmented object

Assumptions:

- We have a segmented, labeled image.
- Each object that is to be described has been identified during segmentation.

5

- Ideally, one region in the segmented image should correspond to one object.
- One object should not be fragmented into several non-connected regions.
- Some small noise objects will often occurr, these can often be removed later.

Example 1: Recognize printed numbers

• Goal: get the series of digits, e.g. 1415926535897.....

Steps in the program:

- 1. Segment the image to find digit pixels.
- 2. Find angle of rotation and rotate back.
- 3. Create region objects one object pr. digit or connected component.
- 4. Compute features describing shape of objects
- 5. Train a classifier on many objects of each digit.
- 6. Classify a new object as the one with the highest probability.

F05	13.10.2010	
-----	------------	--

INF 4300

6

Example 2: Recognize music symbols

INF 4300

• Goal:interpret the notes and symbols to create a MIDI-file and then play it!

Steps in the program:

F05 13.10.2010

- 1. Segment the image to find symbol pixels.
- 2. Find angle of rotation and rotate back.
- 3. Find the note lines and remove them.
- 4. Create regions objects for connected components.
- 5. Match each object with known object class (whole note, quarter note, rest, bar, etc.) based on object features.
- 6. For all notes: find note height given its vertical position.
- 7. Create a midi file from this.

From pixels to features

 Input to the classifier is normally a set of features derived from the image data, not the image data itself.

• Why can't we just use all the gray level pixels as they are for text recognition?

- For text recognition: the information is in

shape, not in gray levels.

- Objects corresponds to regions. We need the spatial relationship between the pixels.
- Region feature extraction Region features: -Area -Perimeter -Curvature -Moment of inertia

7

F05 13.10.2010

Typical image analysis tasks

 Preprocessing/noise Segmentation Feature extraction Are the original images or do we need addi What kind of feature between the object Exploratory features Which features sep How many features Classification From a set of object decide on a method For new objects: as with the highest pro- Validation of classification 	rocessing/noise filtering nentation ure extraction re the original image pixel values sufficient for classification, r do we need additional features? /hat kind of features do we use in order to discriminate etween the object classes involved? Dratory feature analysis and selection /hich features separate the object classes best? ow many features are needed? sification rom a set of object examples with known class, ecide on a method that separates objects of different types. or new objects: assign each object/pixel to the class rith the highest probability lation of classifier accuracy		 This is a group of in – Invariant to position Features based on th – Number of termina – Number of breakpon – Number of breakpon – Number of breakpon – Number of crossing Region features: – Number of compon – Euler number, E = – Number of compon – Euler number, E = – Number of compon – Symmetry 	variant integer features on, rotation, scaling, warping he object skeleton ations (one line from a point) oints or corners (two lines from a po ing points (three lines from a point) gs (> three lines from a point) n the object (H) nents (C) C - H ected components – number of holes	int) Region with two holes
F05 13.10.2010	INF 4300	9	F05 13.10.2010	INF 4300	10

1D Projections

• For each row in the region, count the number of object pixels.

Projections

Topologic features

• 1D horizontal projection of the region:

$$p_h(x) = \sum_{y} f(x, y)$$

• 1D vertical projection of the region:

$$p_{v}(y) = \sum f(x, y)$$

- Can be made scale independent by using a fixed number of bins and normalizing the histograms.
- Radial projection in reference to centroid -> "signature".

Use of projection histograms

- Divide the object into different regions and compute projection histograms for each region.
 - How can we use this to separate 6 and 9?
- The histograms can also be used as features directly.

	_											
n												
•••												
	_		_	_	_	_				_	_	_

Use of projection histograms

Check if a page with text is rotated

14159265358979323 41971693993751058 06286208993628034 08661328230664709 53594081284811174 055566446229489541 65593446128475642 190914564856692346

• Detecting lines, connected objects or single symbols

F05 13.10.2010

INF 4300

14

Geometric features from contours

INF 4300

- Boundary length/perimeter
- Area

F05 13.10.2010

- Curvature
- Diameter/major/minor axis
- Eccentricity
- Bending energy
- Basis expansion (Fourier last week)

Perimeter length from chain code

- Distance measure differs when using 8- or 4-neighborhood
- − Using 4-neighborhood, measured length \geq actual length.
- In 8-neighborhood, fair approximation from chain code by:

$$P_F = n_{even} + n_{odd} \sqrt{2}$$

- This overestimates real perimeters systematically.
- A general correction factor of 0.95 works satisfactory.
- For straight lines, find a corner count $n_{\rm c}$ as the number of occurrences of consecutive unequal chain elements, then:

 $P_{VS} = 0.980 n_{even} + 1.406 n_{odd} - 0.091 n_c$

- For general blob-like objects:

$$P_{K} = \pi \left(1 + \sqrt{2}\right) \left(n_{even} + n_{odd} \sqrt{2}\right) / 8$$

13

F05 13.10.2010

Area of region

- Straight-forward implementation: traverse all object pixels.
- Can also be calculated from the boundary by Greens theorem
- Surface integral equals boundary integral

$$A = \int \int_{S} dx dy = \int_{C} x dy$$

- Simple to implement:
 - follow contour, x and dy follow from pixels in the sequence
- Approximate area from (x,y)-coordinates of N polygon vertices:

$$\hat{A} = \frac{1}{2} \left| \sum_{k=0}^{N-1} (x_k y_{k+1} - y_k x_{k+1}) \right|$$

- Where sign of sum indicates clockwise or anti-clockwise direction.

F05	13.10.2010
-----	------------

```
INF 4300
```

Compactness and circularity

- Compactness (very simple measure)
 - $\gamma = P^2 / (4\pi A)$, where P = Perimeter, A = Area,
 - For a circular disc, $\boldsymbol{\gamma}$ is minimum and equals 1.
 - Compactness attains high value for complex object shapes, but also for very elongated simple objects, like rectangles and ellipses where a/b ratio is high.
- G&W defines
 - Compactness = P^2/A
 - Circularity ratio = $4\pi A/P^2$

F05 13.10.2010	INF 4300

Curvature

- In the continous case, curvature is the rate of change of slope.

$$|\kappa(s)|^2 = \left[\frac{d^2x}{ds^2}\right]^2 + \left[\frac{d^2y}{ds^2}\right]^2$$

- In the discrete case, difficult because boundary is locally ragged.
- Use difference between slopes of adjacent boundary segments to describe curvature at point of segment intersection.
- Curvature can be calculated from chain code.

Discrete computation of curvature

- Trace the boundary and insert vertices at a given distance (e.g. 3 pixels apart).
- Compute local curvature c_i as the difference between the directions of two edge segments joining a vertex:

$$c_i = \vec{d}_i - \vec{d}_{i-1}$$

 $\label{eq:v_i} v_i: edge \ segment \ i \\ d^{*}_{t-1}: \ unit \ vectors \ of \ edge \ segments \ d_{t-1} \ and \ dt \\ c_i: \ local \ curvature \ at \ point \ i \\ \end{cases}$

- Curvature feature: sum all local curvature measures along the border.
- More complex regions get higher curvature.

17

18

Conto	our based featu	lres	Bounding box and CH features				
 Diameter = Major Longest distance of a lin on the perimeter Minor axis (b) - Computed along a direct axis. Largest length poss the given direction. "Eccentricity" of 	Or axis (a) The segment connecting two points tion perpendicular to the major sible between two border points in The contour (a/b)		 Regular bounding box Width/height of bounding box Centre of mass position in box If the object's orientation is known, a bounding box can also be oriented along this direction. Extent = Area/(Area of bounding box) Solidity = Area/(Area of Convex Hull) 				
F05 13.10.2010	INF 4300	21	F05 13.10.2010	INF 4300	22		
	Moments		• For binary ima	s from binary	images		
Borrows ideas	 Borrows ideas from physics and statistics. 			bject pixel			

• For a given continuous intensity distribution g(x, y) we define moments m_{pq} by

$$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q g(x, y) dx dy$$

• For sampled (and bounded) intensity distributions f (x, y)

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} f(x, y)$$

• A moment m_{pq} is of *order* p + q.

F05 13.10.2010

INF 4300

23

- $f(x, y) = 0 \Rightarrow$ background pixel
- Area

$$m_{00} = \sum_{x} \sum_{y} f(x, y)$$

• Center of mass /"tyngdepunkt"

$$m_{10} = \sum_{x} \sum_{y} xf(x,y) = \bar{x}m_{00} \quad \Rightarrow \quad \bar{x} = \frac{m_{10}}{m_{00}}$$

$$m_{01} = \sum_{x} \sum_{y} yf(x, y) = \bar{y}m_{00} \implies \bar{y} = \frac{m_{01}}{m_{00}}$$

FOS 13.10.2010 INF 4300 24

Grayscale moments

- In gray scale images, we may regard f(x,y)as a discrete 2-D probability distribution over (x,y)
- For probability distributions, we should have

$$m_{00} = \sum_{x} \sum_{y} f(x, y) = 1$$

And if this is not the case we can normalize by

$$F(x,y) = f(x,y)/m_{00}$$

F05 13.10.2010

INF 4300

Central moments

These are position invariant moments

•

where
$$\mu_{p,q} = \sum_{x} \sum_{y} (x - \bar{x})^{p} (y - \bar{y})^{q} f(x, y)$$
$$\bar{x} = \frac{m_{10}}{m_{00}}, \quad \bar{y} = \frac{m_{01}}{m_{00}}$$

• The total mass and the center of mass are given by

$$\mu_{00} = \sum_{x} \sum_{y} f(x, y), \quad \mu_{10} = \mu_{01} = 0$$

- This corresponds to computing ordinary moments after having translated the object so that center of mass is in origo. •
- Central moments are independent of position, • but are not scaling or rotation invariant.
- What is μ₀₀ for a binary object? F05 13.10.2010 INF 4300

Moments of inertia or Variance

• The two second order central moments measure the spread of points around the y- and x-axis through the centre of mass

> $\mu_{20} = \sum_{x} \sum_{y} (x - \bar{x})^2 f(x, y)$ $\mu_{02} = \sum_{x} \sum_{y} (y - \bar{y})^2 f(x, y)$

- From physics: moment of inertia about an axis: how much energy is required to rotate the object about this axis: Statisticans like to call this variance.
- The cross moment of intertia is given by

$$\mu_{11} = \sum_{x} \sum_{y} (x - \bar{x})(y - \bar{y})f(x, y)$$

- statisticians call this covariance or correlation.
- Orientation of the object can be derived from these moments. - This implies that they are not invariant to rotation.

Moments of an ellipse

26

 Assume that the ellipse has semimajor and semiminor axes (*a*,*b*). For an ellipse given by

$$(x/a)^{2} + (y/b)^{2} = 1 \implies y = \pm \frac{b}{a} \sqrt{a^{2} - x^{2}}$$

the largest second order central moment is given by

27

25

F05 13.10.2010

The best fitting ellipse

- Object ellipse is defined as the ellipse whose least and greatest moments of inertia equal those of the object.
- · Semi-major and semi-minor axes are given by

$$(\hat{a}, \hat{b}) = \sqrt{\frac{2\left[\mu_{20} + \mu_{02} \pm \sqrt{(\mu_{20} + \mu_{02})^2 + 4\mu_{12}} + 4\mu_{12}\right]}{\mu_{00}}}$$

• Numerical eccentricity is given by

• Orientation invariant object features.

 $\hat{\varepsilon} = \sqrt{\frac{\hat{a}^2 - \hat{b}^2}{\hat{z}^2}}$

• Gray scale or binary object.

F05 13.10.2010

INF 4300

33

What if we want scale-invariance?

• Changing the scale of f(x, y) by (α, β) gives a new image:

 $f'(x, y) = f(x / \alpha, y / \beta)$

• The transformed central moments

$$\mu_{pq}' = \alpha^{1+p} \beta^{1+q} \mu_{pq}$$

• If $\alpha = \beta$, scale-invariant central moments are given by the normalization:

$$\eta_{pq} = \frac{\mu_{pq}}{(\mu_{00})^{\gamma}}, \quad \gamma = \frac{p+q}{2} + 1, \quad p+q \ge 2$$

F05 13.10.2010

INF 4300

34

Hu's moments: A set of 7 moments that are invariant to translation, scaling and rotation

For second order moments (p+q=2), two invariants are used:

 $\begin{aligned} \phi_1 &= \eta_{20} + \eta_{02} \\ \phi_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \end{aligned}$

For third order moments, (p+q=3), we can use $a = (\eta_{30} - 3\eta_{12}),$ $b = (3\eta_{21} - \eta_{03}),$ $c = (\eta_{30} + \eta_{12}),$ and $d = (\eta_{21} + \eta_{03})$

and simplify the five last invariants of the set:

$$\begin{split} \phi_3 &= a^2 + b^2 \\ \phi_4 &= c^2 + d^2 \\ \phi_5 &= ac[c^2 - 3d^2] + bd[3c^2 - d^2] \\ \phi_6 &= (\eta_{20} - \eta_{02})[c^2 - d^2] + 4\eta_{11}cd \\ \phi_7 &= bc[c^2 - 3d^2] - ad[3c^2 - d^2] \end{split}$$

Moments as shape features

- The central moments are seldom used directly as shape descriptors.
- Major and minor axis are useful shape descriptors.
- Object orientation is normally not used directly, but to estimate rotation.
- The set of 7 Hu moments can be used as shape features. (Start with the first four, as the last half are often zero for simple objects).

Moments that are invariant to general affine transforms

$I_1 =$	$\frac{\mu_{20}\mu_{02} - \mu_{11}^2}{\mu_{00}^4}$
$I_2 =$	$\frac{\mu_{30}^2 \mu_{03}^2 - 6\mu_{30}\mu_{21}\mu_{12}\mu_{03} + 4\mu_{30}\mu_{12}^3 \mu_{03} - 3\mu_{12}^2 \mu_{21}^2}{\mu_{00}^{10}}$
$I_3 =$	$\frac{\mu_{20}(\mu_{21}\mu_{30}-\mu_{12}^2)-\mu_{11}(\mu_{30}\mu_{03}-\mu_{21}\mu_{12}+\mu_{02}(\mu_{30}\mu_{12}-\mu_{21}^2)}{\mu_{00}^7}$
$I_4 =$	$ \{ \mu_{20}^3 \mu_{03}^2 - 6\mu_{20}^2 \mu_{02} \mu_{21} \mu_{03} + 9\mu_{20}^2 \mu_{02} \mu_{12}^2 + 12\mu_{20} \mu_{11}^2 \mu_{21} \mu_{03} + 6\mu_{20} \mu_{11} \mu_{02} \mu_{30} \mu_{03} - 18\mu_{20} \mu_{11} \mu_{02} \mu_{21} \mu_{12} - 8\mu_{11}^3 \mu_{30} \mu_{03} - 6\mu_{20} \mu_{02}^2 \mu_{30} \mu_{12} + 9\mu_{20} \mu_{02}^2 \mu_{21}^2 + 12\mu_{11}^2 \mu_{02} \mu_{30} \mu_{12} - 6\mu_{11} \mu_{02}^2 \mu_{30} \mu_{21} + \mu_{02}^3 \mu_{30}^2 \} / \mu_{00}^{11} $

Contrast invariants

- Abo-Zaid *et al.* have defined a normalization that cancels both scaling and contrast.
- The normalization is given by

$$\eta'_{pq} = \frac{\mu_{pq}}{\mu_{00}} \left(\frac{\mu_{00}}{\mu_{20} + \mu_{02}}\right)^{\frac{(p+q)^2}{2}}$$

- This normalization also reduces the dynamic range of the moment features, so that we may use higher order moments without having to resort to logarithmic representation.
- Abo-Zaid's normalization cancels the effect of changes in contrast, but not the effect of changes in intensity:

f'(x, y) = f(x, y) + b

• In practice, we often experience a combination:

f'(x, y) = cf(x, y) + b

F05 13.10.2010

Scatter plots

INF 4300

- A 2D scatter plot is a plot of feature values for two different features. Each object's feature values are plotted in the position given by the features values, and with a class label telling its object class.
- Matlab: gscatter(feature1, feature2, labelvector)
- Classification is done based on more than two features, but this is difficult to visualize.
- Features with good class separation show clusters for each class, but different clusters should ideally be separated.

Which numbers are well and bad separated?

F05 13.10.2010

F05 13.10.2010

37

Two correlated features

F05 13.10.2010	INF 4300	41	F05 13.10.2010	INF 4300	42

