

3 of 13 symmetric 3D NN

Fourier analysis example

Higher order statistics	Learning goals - texture	
Higher order methods include	Understand what texture is, and the difference between first	
 Gray level runlength matrices - "histograms" of graylevel run lengths in different directions (INF 5300) L3L3 L3E3 L3E3 	order and second order measuresUnderstand the GLCM matrix, and be able to describe algorithm	
- Laws' texture masks - 1 2 1 -1 0 1 -1 2 -1 masks resulting from 2 4 2 -2 0 2 -2 4 -2 covolutions of line (L), edge (E), E3L3 E3E3 E3S3	 Understand how we go from an image to a GLCM feature image Preprocessing, choosing d and θ, selecting some features that are not too correlated Understand Law's texture measures and how they are built 	
spot (S), and ripple (R) -1 -2 -1 0 0 0 1 2 1 -1 0 -1 -1 -2 1 0 0 0 0 0 0 1 2 1 -1 0 1 -1 2 1 -1 2 1 -1 -2 -1 -1 -2 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	 based on basic filtering operations There is no optimal texture features, it depends on the problem 	
-1 -2 -1 1 0 -1 1 -2 1 F2 08.09.10 INF 4300 13	F2 08.09.10 INF 4300 14	
Edge-based segmentation	Improved edge detection	
 Two steps are needed: 1. Edge detection (to identify "edgels" - edge pixels) - (Gradient, Laplacian, LoG, Canny filtering) 2. Edge linking – linking adjacent "edgels" into edges 	 What if we assume the following: All gradient magnitudes above a strict threshold are assumed to belong to a bona fide edge. All gradient magnitudes above an unstrict threshold and connected to a pixel resulting from the strict threshold are also assumed to belong to real edges. Hysteresis thresholding – Canny's edge detection (see INF 2310). 	
 Local Processing magnitude of the gradient direction of the gradient vector edges in a predefined neighborhood are linked if both magnitude and direction criteria is satisfied Global Processing via Hough Transform 	 also assumed to belong to real edges. Hysteresis thresholding – Canny's edge detection 	
 Local Processing magnitude of the gradient direction of the gradient vector edges in a predefined neighborhood are linked if both magnitude and direction criteria is satisfied 	 also assumed to belong to real edges. Hysteresis thresholding – Canny's edge detection 	
 Local Processing magnitude of the gradient direction of the gradient vector edges in a predefined neighborhood are linked if both magnitude and direction criteria is satisfied Global Processing via Hough Transform 	 also assumed to belong to real edges. Hysteresis thresholding – Canny's edge detection (see INF 2310). 	
 Local Processing magnitude of the gradient direction of the gradient vector edges in a predefined neighborhood are linked if both magnitude and direction criteria is satisfied Global Processing via Hough Transform 	also assumed to belong to real edges. • Hysteresis thresholding – Canny's edge detection (see INF 2310). F3 22.09.10 INF 4300 16	

Σ: Edge based segme	ntation	Region growing	
Advantages – An approach similar to how humans segmen – Works well in images with good contrast between object and background	it images.	 Starts with a set of seeds (starting pixels) Predefined seeds All pixels as seeds Randomly chosen seeds 	
Disadvantages – Does not work well on images with smooth and low contrast – Sensitive to noise – Robust edge linking is not trivial	transitions	 Region growing steps (bottom-up method) Find starting points Include neighboring pixels with similar features (graylevel, texture, color) A similarity measure r Two variants: Select seeds from the whole range of grey levels in the image Grow regions until all pixels in image belong to a region. Select seed only from objects of interest (e.g. bright structur Grow regions only as long as the similarity criterion is fulfille 	ge. res).
73 22.09.10 INF 4300	19	 Problems: Not trivial to find good starting points Need good criteria for similarity F3 22.09.10 INF 4300 	20
Similarity measur	es	Region merging techn	iques
Similarity measur Graylevel or color? Graylevel and spatial properties, e.g., texture, sh		• Initialize by giving all the pixels a unique label - All pixels in the image are assigned to a region.	iques
Graylevel or color?		 Initialize by giving all the pixels a unique label All pixels in the image are assigned to a region. The rest of the algorithm is as follows: In some predefined order, examine the neighbor megions and decide if the predicate evaluates to truneighboring regions. If the predicate evaluates to true for a given pair of the pred	egions of all le for all pairs of
Graylevel or color? Graylevel and spatial properties, e.g., texture, sh Intensity difference within a region (from pixel to seed or to region average so far)		 Initialize by giving all the pixels a unique label All pixels in the image are assigned to a region. The rest of the algorithm is as follows: In some predefined order, examine the neighbor regions and decide if the predicate evaluates to truneighboring regions. 	egions of all le for all pairs of if neighboring ined based on
Graylevel or color? Graylevel and spatial properties, e.g., texture, sh Intensity difference within a region (from pixel to seed or to region average so far) Within a value range (min, max) Distance between mean value of the regions (specially for region merging or splitting)		 Initialize by giving all the pixels a unique label All pixels in the image are assigned to a region. The rest of the algorithm is as follows: In some predefined order, examine the neighbor m regions and decide if the predicate evaluates to truneighboring regions. If the predicate evaluates to true for a given pair or regions the neighbors the same label. The predicate is the similarity measure (can be defined, a continue until no more mergings are possible. 	egions of all le for all pairs of if neighboring ined based on

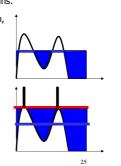
- We run a standard region merging procedure where all pixels initially are given a unique label.
- If neighboring regions have mean values within 10 gray levels they are fused.
- Regions are considered neighbors in 8-connectivity.

F3 22.09.10

INF 4300

- Initialization is critical, results will in general depend on the initialization.
- The order in which the regions are treated will also influence the result:
 The top image was flipped upside down before it was fed to the merging algorithm.
- Notice the differences!

F3 22.09.10


INF 4300

- Look at the image as a 3D topographic surface, (x,y,intensity), with both valleys and mountains.
- Assume that there is a hole at each minimum, and that the surface is immersed into a lake.
- The water will enter through the holes at the minima and flood the surface.
- To avoid two different basins to merge, a dam is built.
- Final step: the only thing visible would be the dams.
- The connected dam boundaries correspond to the watershed lines.

F3 22.09.10

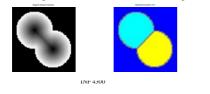
27

Watershed segmentation

- Can be used on images derived from:
 - The intensity image
 - Edge enhanced image
 - Distance transformed image
 - Thresholded image. From each foreground pixel,

INF 4300

- compute the distance to a background pixel.
- Gradient of the image
- Most common: gradient image


Splitting objects by watershed

INF 4300

- Example: Splitting touching or overlapping objects.
 - Given graylevel (or color) image
 - Perform first stage segmentation

F3 22.09.10

- (edge detection, thresholding, classification,...)
- Now you have a labeled image, e.g. foreground / background
- Obtain distance transform image
 From each foreground pixel, compute distance to background.
- Use watershed algorithm on inverse of distance image.

Shape representations vs. descriptors


- After the segmentation of an image, its regions or edges are represented and described in a manner appropriate for further processing.
- Shape representation: the ways we store and represent the objects
 Perimeter
 - Interior

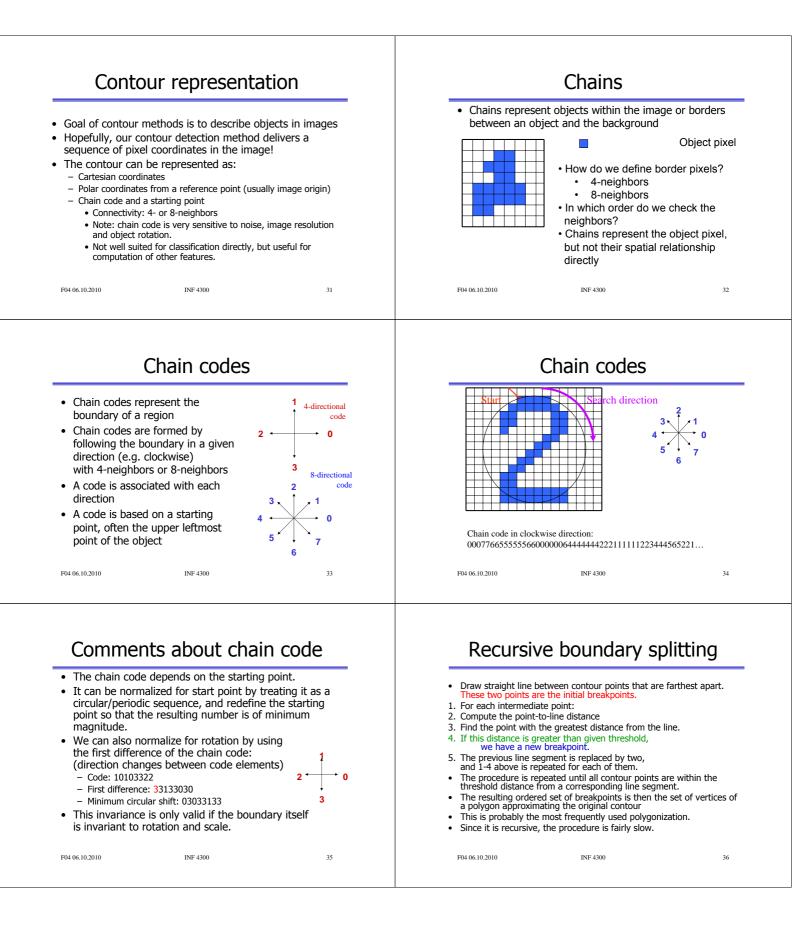
F3 22.09.10

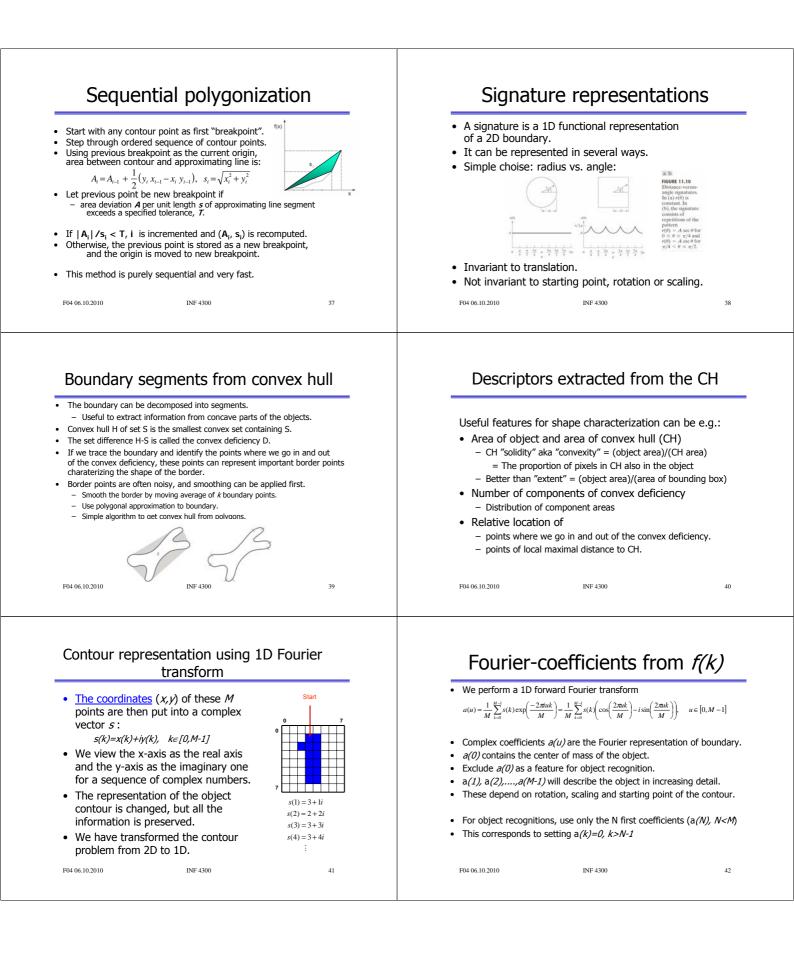
• Shape descriptors: methods for characterizing object shapes.

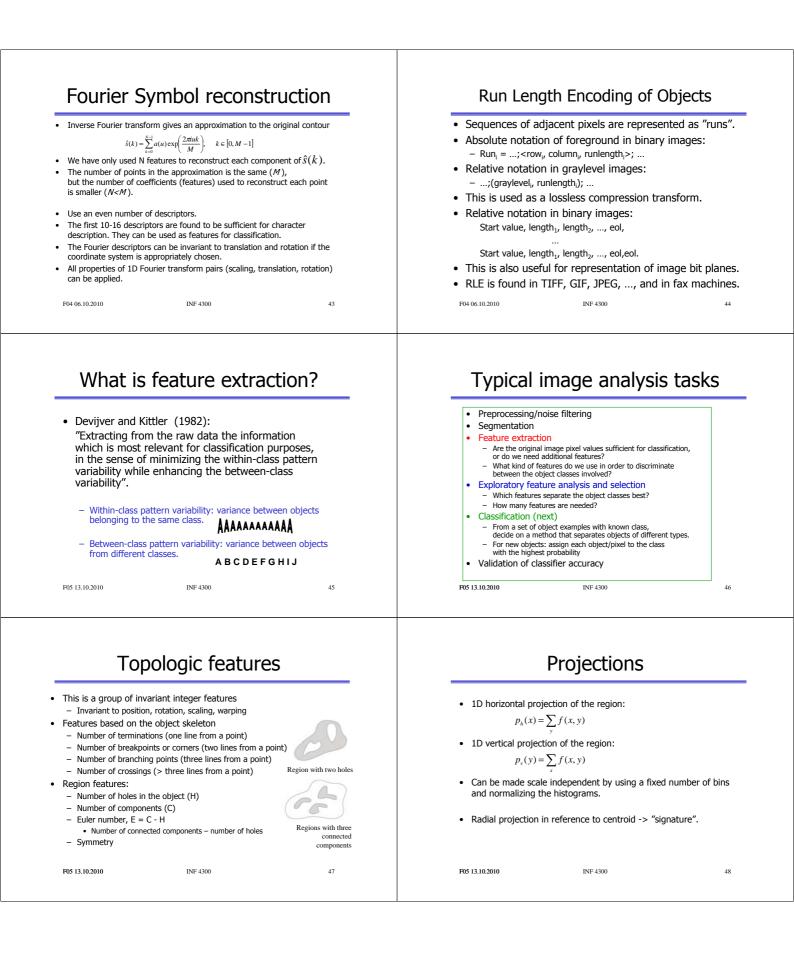
The resulting feature values should be useful for

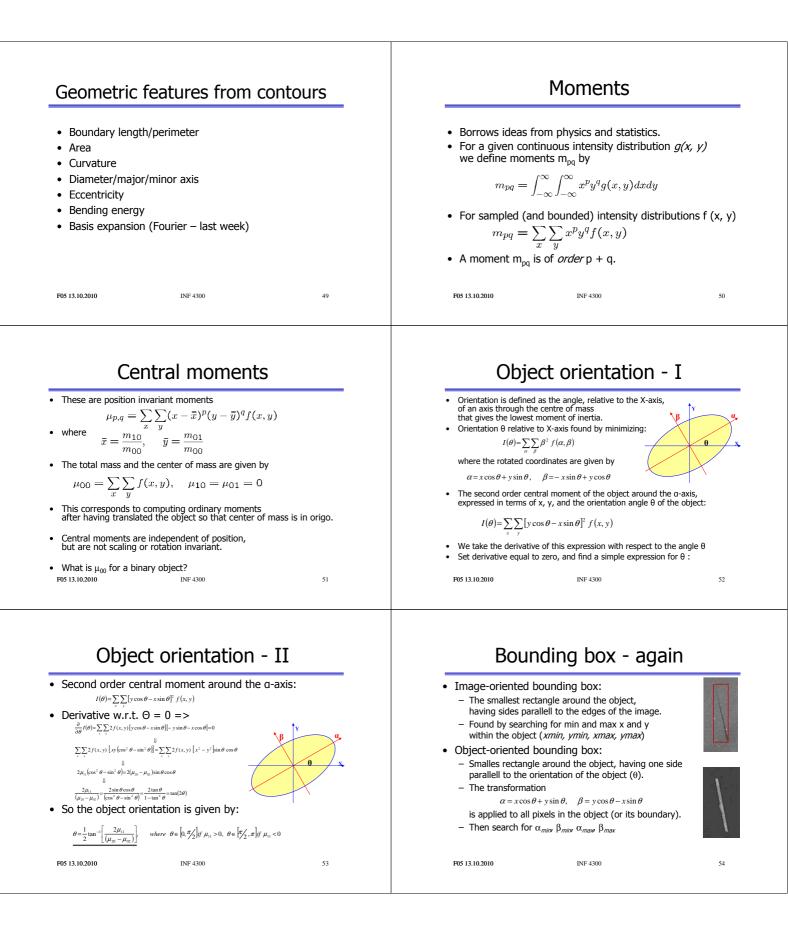
discrimination between different object types. F05 13.10.2010 INF 4300

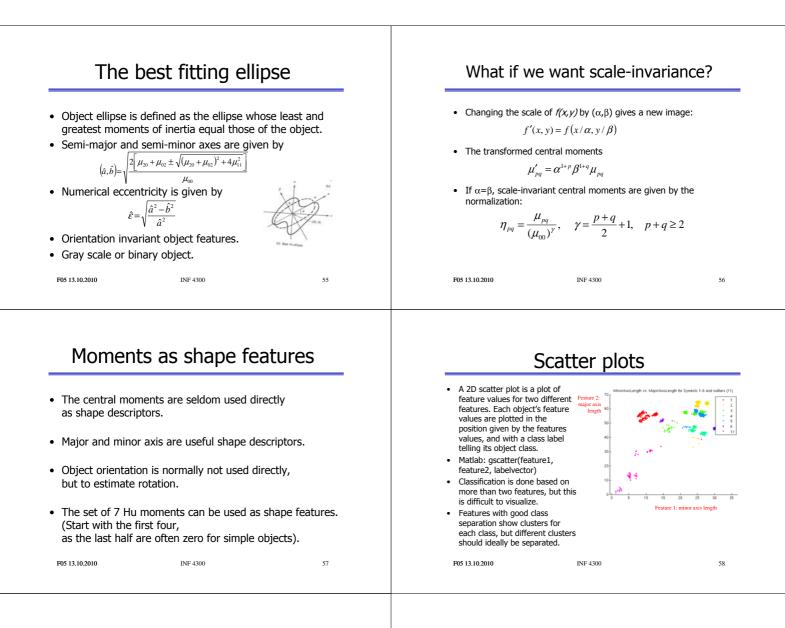
Shape invariants


- Shape descriptors depend on viewpoint,
 > object recognition may often be impossible if object or observer changes position.
- Shape description invariance is important


 shape invariants represent properties which remain unchanged under an appropriate class of transforms.
- Stability of invariants is a crucial property which affects their applicability.
- The robustness of invariants to image noise and errors introduced by image sensors is of prime importance.


F04 06.10.2010


INF 4300


26

The "curse-of-dimensionality"

Correct classification rate as function of feature dimensionality, for different amounts of training data

Equal prior probabilities of the two classes is assumed

- Also called "peaking phenomenon".
- For a finite training sample size, the correct classification rate initially increases when adding new features, attains a maximum and then begins to decrease.
- The implication is that:
- For a high measurement complexity, we will need large amounts of training data in order to attain the best classification performance.
 - => 5-10 samples per feature per class.

Illustration from G.F. Hughes (1968).

59