
INF 4300 - Exercise for Friday 29.10.2010  
Statistics and classification using Matlab 
 
Goal 

This exercise aims to learn you the basics of the PRTools toolbox and how it can be used 
to do simple classification and clustering tasks. This exercise will also introduce you to the 
LIBSVM toolbox. Please read the Stuff to learn and try out the commands there, before 
you start doing the exercises. 

 
Stuff to learn 
 
Installing PRTools, LIBSVM and exercise datasets 

PRTools can be downloaded from http://prtools.org/download.html, or by adding prtools to 
the Matlab path; addpath('/local/opt/matlab/ifi/toolbox/prtools'). Add 
~inf4300/prdatasets as well. Useful for this exercise is also 
~inf4300/prdatasets/Hu and ~inf4300/prdatasets/ddata 
 
Download LIBSVM including a simple Matlab interface from 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#matlab. Follow the installation 
instructions included. (I suggest you place all the files in a sub-directory, in your current 
Matlab working directory, called libsvm/. Note that the binaries available for this package 
will only run on linux and windows operating systems.)  

  
Data structures 

The MATLAB language usually works with the MATLAB array object type. The 2 - 
dimensional array – a matrix – is the most common type (although N-dimensional arrays 
are allowed).  
The standard operations are defined as the matrix operations (a scalar is regarded as a 
1x1 matrix). For example: 
 

C=A^-1 * B 
 
This equation first calculates the inverse of matrix A and then multiplies the result with 
matrix B. Matrix C is the result. The object-oriented structure in MATLAB allows us to 
define specific functions, operators, and object classes of our own. The PRTools 4.0 
toolbox does this, and defines two classes (dataset and mapping) with the corresponding 
operators and functions. 
 
In PRTools the easiest way to apply a mapping W to a dataset A is by A*W. The matrix 
multiplication symbol * is overloaded here. The operation may also be written as 
map(A,W). Like anywhere else in MATLAB, concatenations of operations are possible, 
e.g. A*W1*W2*W3, and are executed from left to right. 

 
Datasets 

PRTools deals with sets of objects represented by vectors in a feature space. The central 
data structure is a so-called dataset. It consists of a matrix of size m by k, where m row 
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vectors representing the objects given by k features each. Attached to this matrix is a set of 
m labels (strings or numbers), one for each object and a set of k feature names (also strings 
or numbers), one for each feature. Moreover, a set of prior probabilities, one for each class, 
is stored. Objects with the same label belong to the same class. In most help files in 
PRTools, a dataset is denoted by A. Almost all routines can handle multi-class objects. 
Some useful routines to handle datasets are: 
 
dataset Define dataset from data matrix and labels 
gendat Generate a random subset of a dataset 
genlab Generate dataset labels 
seldat Select a specified subset of a dataset 
setdat Define a new dataset from an old one by replacing its data 
getdata Retrieve data from dataset 
getlab Retrieve object labels 
getfeat  Retrieve feature labels 
renumlab Convert labels to numbers 
 
Sets of objects may be given externally or may be generated by one of the data generation 
routines in PRTools. Their labels may be given externally or may be the results of 
classification. A dataset containing 10 objects with 5 random measurements can be 
generated by: 
 
>> data = rand(10, 5); 
>> a = dataset(data) 
10 by 5 dataset with 0 classes: [] 
 
In this example no labels are supplied, therefore no classes are detected. Labels can be 
added to the dataset by: 
 
>> labs = [1 1 1 1 1 2 2 2 2 2]'; % labs should be a column  
>> a = dataset(a, labs) 
10 by 5 dataset with 2 classes: [5 5] 
 
Note that the labels have to be supplied as a column vector. A simple way to assign labels 
to a dataset is offered by the routine genlab in combination with the MATLAB char 
command: 
 
>> labs = genlab([4 2 4], char('apple', 'pear', 'banana')) 
>> a = dataset(a, labs) 
10 by 5 dataset with 3 classes: [4 4 2] 
 
Note that the order of the classes has changed. Use the routines getlab and getfeat to 
retrieve the object labels and the feature labels of a. The fields of a dataset can be made 
visible by converting it to a structure, e.g.: 
 
>> struct(a) 
data: [10x5 double] 
lablist: [3x6 char] 
nlab: [10x1 double] 
labtype: 'crisp' 



targets: [] 
featlab: [5x1 double] 
featdom: {[] [] [] [] []} 
prior: [] 
cost: [] 
objsize: 10 
featsize: 5 
ident: [10x1 double] 
version: {[1x1 struct] '15-Nov-2005 10:06:44'} 
name: [] 
user: [] 
 
In the online information on datasets (help datasets) the meaning of these fields is 
explained. Each field may be changed by a set-command, e.g. 
 
>> b = setdata(a, rand(10, 5)); 
 
Field values can be retrieved by a similar get-command, e.g. 
 
>> classnames = getlablist(a) 
 
In nlab an index is stored for each object to the list of class names lablist. Note that 
this list is alphabetically ordered. The size of the dataset can be found by both size and 
getsize: 
 
>> [m, k] = size(a); 
>> [m, k, c] = getsize(a); 
 
The number of objects is returned in m, the number of features in k and the number of 
classes in c. The class prior probabilities are stored in prior. It is by default set to the 
class frequencies if the field is empty. Data in a dataset can also be retrieved by +a. 
 
•  Execute the commands given above to create the dataset a. 
•  Have a look at the help information of seldat. Use the routine to extract the banana 
class from a and check this by inspecting the result of +a. 
 
Datasets can be manipulated in many ways as with MATLAB matrices. So [a1;a2] 
combines two datasets, provided that they have the same number of features. The feature 
set may be extended by [a1 a2] if a1 and a2 have the same number of objects. 
 
•  Generate 3 new objects of the classes 'apple' and 'pear' respectively, and add them 
to the dataset a. Check if the class size changes accordingly. 
•  Add a new, 6th feature to the whole dataset a. 
 
Another way to inspect a dataset is to make a scatter plot of the objects in the dataset. For 
this the function scatterd is supplied. This plots each object in a dataset in a 2D graph 
using a colored marker when class labels are supplied. For example: scatterd(a). 
When more than two features are present in the dataset, only the first two are used. To 
obtain a scatter plot of two other features they have to be explicitly extracted first, e.g. a1 = 
a(:,[2 5]); It is also possible to create 3D scatter plots. 



 
•  Use scatterd to make a scatter plot of the features 2 and 5 of dataset a. 
•  Make a 3-dimensional scatter plot by scatterd(a, 3) and try to rotate it by the mouse 
after pressing the right toolbar button. 

 
Classifiers 

In PRTools datasets are transformed by mappings. These are procedures that map a set 
of objects from one space into another. Often a mapping has to be trained, i.e. it has to be 
adapted to a training set by some estimation or training procedures to minimize some error 
for the training set.  
 
An example is the principal component analysis that performs an orthogonal rotation 
according to the directions with main variances in a given dataset (Principal component 
analysis is mentioned here only as an example of mapping. The concept, though known to 
some of you, will not be discussed in great detail in this course): 
 
>> w = pca(a, 2) 
Principal Component Analysis, 2 to 2 trained mapping --> affine 
 
This just defines the mapping (‘trains’ it by a) for finding the first 2 principal components. 
 
The fields of a mapping can be shown by struct(w). By typing help mappings more 
information on mappings can be found. The mapping w may be applied to a or to another 
10-dimensional dataset by: 
 
>> b = map(a, w) 
10 by 2 dataset with 3 classes: [4 4 2] 
 
Instead of the routine map also the ‘*’ operator may be used for applying mappings to 
datasets: 
 
>> b = a*w 
10 by 2 dataset with 3 classes: [4 4 2] 
 
The ‘*’ operator may also be used for training. a*pca is equivalent with pca(a) and 
a*pca([], 2) is equivalent to pca(a, 2). 
 
A special case of mapping is a classifier. It maps a dataset to distances of a discriminant 
function or to class posterior probability estimates. They can be used in an untrained as 
well as in a trained mode. When applied to a dataset, in the first mode the dataset is used 
for training and a classifier is generated, while in the second mode the dataset is classified. 
 
Unlike mappings, fixed classifiers do not exist. Some important classifiers are: 
qdc  Quadratic classifier assuming normal densities (sigma unconstrained) 
udc  Quadratic classifier assuming normal densities with uncorrelated features 
ldc  Linear classifier assuming normal densities with equal covariance matrices 
nmc  Nearest mean classifier (sigma diagonal and equal) 
 
• Generate a dataset a by gendath and compute the Linear classifier by w = 



ldc(a). Make a scatter plot of a and plot the classifier by plotc(w), and the underlying 
density estimate by plotm(w). Different colors for classifiers can be realized by adding a 
color label, e.g. plotc(w, 'r'). Type help plotc for more information about the use of 
color. Classify the training set by d=map(a, w) or d = a*w. Show the result on the screen 
by +d. 
This is a density estimate based classifier, and will after training give density estimators for 
all classes in the training set. Estimates for objects in some dataset b can be found by d = 
b*w. A posteriori probability estimates are found after normalisation to ensure that the 
posterior probabilities sum to one. This is enabled by classc. So classc(map(a,w)), 
or a*w*classc maps the dataset a on the trained classifier w and normalises the resulting 
posterior probabilities. If we include training as well then this can be written in a one-liner 
as p = a*(a*qdc)*classc. (Try to understand this expression: between the brackets 
the classifier is trained. The result is applied on the same dataset). The label assigned by 
the classifier can be found by labeld. 
 

Classifier evaluation and error estimation  
The following routines are useful to know  for evaluation of classifiers:  
  
testc  test a dataset on a trained classifier  
crossval  train and test classifiers by cross validation  
cleval  classifier evaluation by computing a learning curve  
gendat  split a given dataset at random into a training set and a test set.  
confmat calculate a confusion matrix for your classifier  
  
A simple example of the generation and use of a test set is the following:  
Load the mfeat_kar dataset, consisting of 64 Karhunen-Loeve coefficients measured  
for 10*200 written digits (’0’ to ’9’). A training set of 50 objects per class (i.e. a fraction of  
0.25 of 200) can be generated by:  
  
>> a = mfeat_kar  
MFEAT KL Features, 2000 by 64 dataset with 10 classes: [200 ... 200]  
>> [trainset,testset] = gendat(a,0.25)  
MFEAT KL Features, 500 by 64 dataset with 10 classes: [50 ... 50]  
MFEAT KL Features, 1500 by 64 dataset with 10 classes: [150 ... 150]  
  
50 × 10 objects are stored in trainset, the remaining 1500 objects are stored in testset.  
Train the linear normal densities based classifier and test it:  
  
>> w = ldc(trainset);  
>> testset*w*testc  
  
Compare the result with training and testing by all data:  
  
>> a*ldc(a)*testc  
  
which is probably better for two reasons. Firstly, it uses more objects for training, so a 
better classifier is obtained. Secondly, it uses the same objects for testing as well a for 
training, by which the test result is definitely positively biased. Because of that, the use of 
separate sets for training and testing has to be preferred.  
  



kNN and Parzen Density classifier (optional, Parzen Density very optional) 
Generate a dataset as follows:  
  
a = gendatb([50, 50])  
  
Make a scatter plot of dataset a. Compute the mappings of a quadratic classifier based  
on normal densities (qdc) and the Parzen classifier w = parzenc(a)  
Plot the two classifiers on the same figure as that of the dataset.  
Which of the two classifiers separates the classes better seeing from your plot? Explain  
that based on the data distribution and the characteristics of the classifiers.  
  
Start a second figure and repeat the same with the k-nearest neighbor classifier with  
50- (w = knnc(a, 50)) and optimal- ([w, k_opt] = knnc(a)) nearest neighbor(s), 
respectively. knnc calculates an optimal k for you. How do you think it does it? What is the 
value of k_opt? Which of the two classifiers separates the classes better  
seeing from your plot? Why?   
  
The k-means algorithm  
We will show the principle of the k-means algorithm graphically on a 2-dimensional 
dataset. This is done in several steps.  
  
1. Take a 2-dimensional dataset, e.q. a = gendatb;. Set k=4.  
2. Initialise the procedure by randomly taking k objects from the dataset:  
  
>> L=randperm(size(a,1)); L=L(1:k);  
  
3. Now, use these objects as the prototypes (or centres) of k centres. Defining labels 1 to  
k, the nearest mean classifier considers each object as a single cluster:  
  
>> w=nmc(dataset(a(L,:),[1:k]’));  
  
4. Repeat the following line until the plot does not change. Try to understand what 
happens:  
  
>> lab=a*w*labeld; a=dataset(a,lab); w=nmc(a); scatterd(a);plotc(w)  
  
Repeat the algorithm with another initialisation, on another dataset and some values for k. 
What happens when the nmc classifier in step 3 is replaced by ldc or qdc?  
A direct way to perform the above clustering is facilitated by kmeans. Run kmeans on one 
of the digit databases (for instance mfeat_kar) with k>=10 and compare the resulting 
labels with the original ones (getlab(a)) using confmat.  
Try to understand what a confusion matrix should show when the k-means clustering had  
resulted into a random labeling. What does this confusion matrix show about the data 
distribution?  

  
Clustering by the EM-Algorithm "soft k-means" (very optional)  

A more general version of k-means clustering is supplied by emclust which can be used 
for several classification algorithms instead of nmc and which returns a classifier that may 
be used to label future datasets in the same way as the obtained clustering.  
The following experiment investigates the clustering stability as a function of the sample 



size. Take a dataset a and compute for a given choice of the number of clusters k the 
clustering of the entire dataset (e.g. using ldc as a classifier) by:  
  
>> [lab,v] = emclust(a,ldc([],1e-6,1e-6),k);  
  
Here v is a mapping that by d = a*v ’classifies’ the dataset according to the final clustering 
(lab = d*labeld). Note that for small datasets or large values of k some clusters might 
become too small (classsizes(d)) for the use of ldc. Instead nmc may be used. The 
dataset a can now be given the cluster labels lab by:  
  
>> a = dataset(a,lab)  
  
This dataset will be used for studying the clustering stability in the following experiments.  
The clustering of a subset a1 of n samples per cluster of a:  
  
>> a1 = gendat(a,repmat(n,1,k))  
  
can now be found from  
  
>> [lab1,v1] = emclust(a1,ldc([],1e-6,1e-6));  
  
As the clustering is initialized by the labels of a1, the difference e in labeling between a and 
the one defined by v1 can be measured by a*v1*testc, or in a single line:  
  
>> [lab1,v1]=emclust(gendat(a,n),ldc([],1e-6,1e-6)); e=a*v1*testc  
  
Average this over 10 experiments and repeat for various values of n. Plot e as a function of 
n.  
 

Support vector machines 
A simple guide to SVM classification can be found at 
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, read this cursory to learn the 
simplest parameters. Included in the LIBSVM package you installed is a simple example. 
More details about this model can be found in LIBSVM FAQ 
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html) and LIBSVM implementation document 
(http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf). 

 
Train and test on the provided data heart_scale, and inspect the output. 
 
The 'svmtrain' function is called as 
>> model = svmtrain(training_label_vector, ... 
training_instance_matrix [, 'libsvm_options']); 

 with parameters  
• training_label_vector 

o An m by 1 vector of training labels (type must be double). 
• training_instance_matrix 

o An m by n matrix of m training instances with n features. 
o It can be dense or sparse (type must be double). 
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• libsvm_options 
o A string of training options in the same format as that of LIBSVM 
 

and returns a model which can be used for future 
prediction.  It is a structure and is organized as [Parameters, nr_class, 
totalSV, rho, Label, ProbA, ProbB, nSV, sv_coef, SVs]: 

 
o Parameters: parameters 
o nr_class: number of classes; = 2 for regression/one-class svm 
o totalSV: total #SV 
o rho: -b of the decision function(s) wx+b 
o Label: label of each class; empty for regression/one-class SVM 
o ProbA: pairwise probability information; empty if -b 0 or in one-class SVM 
o ProbB: pairwise probability information; empty if -b 0 or in one-class SVM 
o nSV: number of SVs for each class; empty for regression/one-class SVM 
o sv_coef: coefficients for SVs in decision functions 
o SVs: support vectors 

 
If you do not use the option '-b 1', ProbA and ProbB are empty 
matrices. If the '-v' option is specified, cross validation is 
conducted and the returned model is just a scalar: cross-validation 
accuracy for classification and mean-squared error for regression. 
 
Prediction from this model can be done with 

 
>> [predicted_label, accuracy, decision_values/prob_estimates] =... 
svmpredict(testing_label_vector, testing_instance_matrix, model [, 
'libsvm_options']); 

 
• testing_label_vector 

o An m by 1 vector of prediction labels. If labels of test data are unknown, simply 
use any random values. (type must be double) 

• testing_instance_matrix 
o An m by n matrix of m testing instances with n features. It can be dense or 

sparse. (type must be double) 
• model 

o The output of svmtrain. 
• libsvm_options 

o A string of testing options in the same format as that of LIBSVM. 
 

>> load heart_scale.mat 
>> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 
0.07'); 
>> [predict_label, accuracy, dec_values] = ... 
svmpredict(heart_scale_label, heart_scale_inst, model);  
 
For probability estimates, you need '-b 1' for training and testing: 
 
>> load heart_scale.mat 



>> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g 
0.07 -b 1'); 
>> [predict_label, accuracy, prob_estimates] = 
svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1'); 
 

Exercises 
 
Scatterplotting 

Load the 4-dimensional Iris dataset by a = iris and make scatterplots of all feature 
combinations using the gridded option of scatterd. Try also all feature combination 
using scatterdui. Plot in a separate figure the one-dimensional feature densities by 
plotf. Identify visually the best combination of two features. Create a new dataset b that 
contains just these two features. Create a new figure by the figure command and plot a 
scatterplot of b. 

 
Simple classification 

From the dataset b, make a scatter plot. Compute the quadratic classifier based on normal 
densities (qdc) and plot it on top of the scatter plot of the dataset. Repeat this for the 
classifier assuming uncorrelated features (udc) and the linear classifier (ldc) based on 
equal normal distributions. These classifiers should be plotted in different colors. 
Plot the underlying density estimates. Do you understand why the different classifiers are 
placed as they are?  
 

Performance evaluation 
In PRTools a dataset a can be split into a training set b and a test set c by the gendat 
command, e.g. [b,c] = gendat(a,0.5). In this case, for each class 50% of the objects 
are randomly chosen for dataset b and the remaining objects are stored in dataset c. After 
computing a classifier by the training set, e.g. w = b*ldc, the test set c can be classified 
by d = c*w. For each object, the label of the class with the highest confidence, or posterior 
probability, can be found by d*labeld. E.g.: 
 
>> a = gendath; 
>> [b,c] = gendat(a,0.9) 
Higleyman Dataset, 90 by 2 dataset with 2 classes: [45 45] 
Higleyman Dataset, 10 by 2 dataset with 2 classes: [5 5] 
>> w = ldc(b); % the class names (labels) of b are stored in w 
>> getlabels(w) % this rutine shows labels (classes labels are 1 
% and 2) 
>> d = c*w; % classify test set 
>> lab = d*labeld; % get the labels of the test objects 
>> disp([+d lab]) % show the posterior probabilities and labels 
 
Note that in the last displayed column (lab) the labels of the classes with the highest 
classifier outputs are stored. The average error in a test set can be directly computed by 
testc: 
 
>> d*testc 
 
which may also be written as testc(d) or testc(c,w) (or c*w*testc). 
 



Generate a training set a of 20 objects per class by gendath and a test set b of 1000 
objects per class. Compute the performance of the Linear classifier by 
b*(a*ldc)*testc. Repeat this for some other classifiers. For which classifiers do the 
errors on the training set and test set differ most? Which classifier performs best? Do you 
have any good explanation? 
 

Another classification exercise 
Load the IMOX data by a = imox. This is a feature based character recognition dataset. 
What are the class labels? Split the dataset in two parts, 80% for training and 20% for 
testing. Store the true labels of the test set using getlabels into lab_true 
Compute three different classifiers on this set. Classify the test set using these classifiers. 
Store the labels found by the classifiers for the test set into lab_test1 etc 
Display the true and estimated labels by disp([lab_true lab_test]) 
Predict the classification error of the test set by observing the output. Verify this number 
using testc. 

 
NIST Digit clustering  

Load a dataset A of 25 NIST digits for all classes 0-9. (Subsample the nist16 set)  
Compute the 7 Hu moments. Perform a cluster analysis by kmeans with k = 10 neglecting 
the original labels. Compare the cluster labels with the original labels using confmat.  
  
The seven Hu invariants (Hu moments) can be calculated by:   
  
% Mass and center  
[c, mass] = masscenter(F);  
% Central moments  
mu20 = mupq(F, 2, 0, c);  
mu11 = mupq(F, 1, 1, c);  
mu02 = mupq(F, 0, 2, c);  
mu30 = mupq(F, 3, 0, c);  
mu21 = mupq(F, 2, 1, c);  
mu12 = mupq(F, 1, 2, c);  
mu03 = mupq(F, 0, 3, c);  
mus = [mu20 mu11 mu02 mu30 mu21 mu12 mu03];  
% Invariants  
[sims,orthos,simorthos]= HUinvariants(mass, mus);  

 
Color image segmentation by clustering  

A full-color image may be segmented by clustering the color feature space. For example, 
read the famous (in pattern recognition) Len(n)a image in a 256 × 256 version  
  
>> a=lena;  
>> show(a)  
  
The image may be reconstructed as a full colour images by:  
  
>> figure; imagesc(reshape(+I,256,256,3));  
  
The 3 colours may be used to segment the images on its pixel values only. We use a small 
subset for finding 4 clusters in the 3d color space:  



  
>> testset=gendat(a,500) % create small test set  
>> [d,w]=emclust(testset,nmc([]),4) % cluster the data  
The retrieved classifier w may be used to classify all image pixels in the colour space:  
  
>> lab = classim(a,w);  
>> figure  
>> imagesc(lab) % view image labels  
  
Finally we will replace each of the clusters by its colour mean:  
  
>> aa=dataset(a,lab(:)) % create labeled dataset  
>> map=+meancov(aa) % compute class means  
>> colormap(map) % set colour map accordingly  
  
Note that the mean colours are very equal. Try to improve the result by using more 
clusters.  
  
Remember color dataset is three-dimensional. You can visualize your clustering, and the 
original data by using scatterd  
  

Texture segmentation (optional) 
A dataset a in the MAT file texturet contains a 256x256 image with 7 features  
(bands): 6 were computed by some texture detector; the last one represents the original  
gray-level values. The data can be visualised by show(a,7). Segment the image by  
[lab,w] = emclust(a,nmc,5). The resulting label vector lab may be reshaped into a 
label image and visualised by imagesc(reshape(lab,a.objsize)). Alternatively, we 
may use the trained mapping w, re-apply it to the original dataset a and obtain the labels by 
classim, and display as an image, imagesc(classim(a*w)).  
Investigate the use of alternative models (classifiers) in emclust such as the mixture of 
Gaussians (using qdc) or non-parametric approach by the nearest neighbour rule 
knnc([],1). How do the segmentation results differ and why? The segmentation speed 
may be significantly increased if the clustering is performed only on a small subset of 
pixels.  

  
SVM and Digit Recognition I 

To generate data for the exercise you will use the function SURF_LightB.m 
and LoadImsComputeSURFB.m from the folder prdatasets. The function 
SURF_LightB.m takes a parameter value ng that defines the size of the grid. Thus the 
image is split into ng × ng equally sized regions. Secondly, the image pixel data is scaled 
to be between 0 and 1. 
Upon starting Matlab add the directory containing the digit figures and the directory 
containing the SVM code to your path. Extract the feature vectors from the training and test 
data: 
 
>> [X train, lab train, X test, lab test] = LoadImsComputeSURFB(7); 
 
To begin with we will construct a classifier to separate the digit “0” from 
the other digits. Construct the indicator vector tt. 
 



>> nt = size(X train, 1); 
>> I = 1:nt; 
>> dig = 0; 
>> ind = I(lab train == dig); 
>> tt = -1*ones(1, nt); 
>> tt(ind) = 1; 
 
The feature vectors should also be scaled so that each value is roughly 
between -1 and 1.  
 
>> X_train = X_train / 400; 
>> X_test = X_test / 400; 
 
First we will train a linear SVM. Set the parameters for the linear SVM and 
use the data X train to train it. Note we have to transpose X train as the 
function SVMTrain expects each column of the data array to correspond to 
a feature vector. 
 
Set parameters for a linear kernel, with cost 1 and shrinking heuristics. 
>> params = ‘-s 0 –c 1 –t 0 –h 1 ‘; 
>> model = svmtrain(X_train’, tt, params); 
 
Next use the function svmpredict to evaluate the SVM you’ve just trained on the test 
data X_test: 
 
>> [TestLabels, accuracy, prob_estimates] = ... 
svmpredict(X_test’,[],model); 
 
Note that if we had given something input as test label we would get accuracy output. 
Calculate the true positive and the false positive rate. 
 
>> n test = length(lab train); 
>> Ia = 1:n test; 
>> pind = Ia(lab test == dig); 
>> n tp = sum(TestLabels(pind) == 1); 
>> tpr = n tp / length(pind); 
>> nind = Ia(lab test _= dig); 
>> n fp = sum(TestLabels(nind) == 1); 
>> fpr = n fp / length(nind); 
>> disp([tpr, fpr]); 
 
Record these numbers and comment on the performance. 
 

SVM and Digit Recognition II 
As you probably noted the linear SVM did not produce good results. Next 
we’ll try applying a kernel-SVM classifier where you’ll use a Gaussian/Radial 
basis function as a kernel. Train and apply it by running the following 
commands; RBF kernel, γ=1, cost 1 and shrinking heuristics  
 
>> params = ‘-s 0 –c 1 –t 2 –g 1 –h 1 ‘; 
>> model = svmtrain(X_train’, tt, params); 



>> [TestLabels, accuracy, prob_estimates] = ... 
svmpredict(X_test’,[],model); 
 
Compute and record the true positive and false positive rate in this case. 
 
At this stage you’re probably wondering why the SVM is not producing 
better results. Don’t worry you are just encountering one of the weaknesses 
of kernel-SVM. There are two parameters which have to be set in our current 
set-up and these are vital to the performance of the resulting classifier. First 
there is the width of the Gaussian kernel γ: 

𝐾(𝑥𝑖, 𝑥) = 𝑒−𝛾�|𝑥𝑖,𝑥|�
2
 

 
Secondly there is the value of the penalty term (C in the lecture) associated with the 
misclassification of a training example included in the cost function the SVM training 
process minimizes. A large penalty forces the SVM to misclassify as few of the training 
examples as possible and may result in choosing a separating hyperplane with small 
margin and these often do not generalize well.  
While too small a penalty term results in a classifier with a large margin but that does not 
discriminate between the two classes. Unfortunately, there is no good rule of thumb for 
setting these two parameters and in general some form of exhaustive search is performed 
over the space of (C, γ) values. Luckily, someone have performed a coarse exhaustive 
search on your behalf. Thus run the training and testing process again. But this time set the 
parameters such that 
>> params = ‘-s 0 –c 2 –t 2 –g 4 –h 1 ‘; 
that is with γ =4 and C=2. Record the true positive and false positive rate is this case. 
 
Repeat the whole process for learning a SVM to discriminate between the 
digit “8” and the other digits. Note in this case set γ =8 and C=2. Record 
the true positive and false positive rate. 

 
SVM and Digit Recognition III (very optional) 

Some of you may be interested in how I learned the values for γ and C. This was done by 
k-fold cross validation and here is its explanation. 
 
First split the set of positive training examples into k subsets of equal size such that each 
example appears in only one subset. Similarly split the set of negative training examples 
into k subsets of equal size. Fix the values of γ and C. Use the first k −1 subsets of the 
positive and negative examples to train an SVM. Apply this learned SVM to the kth subset 
of positive and negative examples that you omitted from the training process and record 
the number of true positives and false positives. Then retrain the SVM using all the training 
data minus the (k − 1)th subset. Use the retrained SVM on the k − 1 subset and record the 
number of true positives and false positives and add these to the numbers calculated for 
the previously tested SVM. Repeat the process with the (k − 2)th subset omitted, then the 
(k−3)rd and so on until you’ve omitted the 1st subset. Record the total number of true 
positives and false positives you have found and use some combination of these two 
numbers to obtain a score. (Here was used (number of true positives)- (number of false 
positives)). This score process represents how good the parameter settings of  and C 
were. Repeat the process for different settings of  and C. Then choose the setting which 
produced the best score. Typically a loose grid search is performed with C=2−5, 2−3, ... 
, 215 and  γ=2−15, 2−13, ... , 23. That is you perform the process just described for 



(C, γ) = (2−5, 2−15), (2−5, 2−13), (2−5, 2−11), ... , (2−5, 23), (2−3, 2−15), ... 
,(215, 23) 
and then when this search indicates a good region in the (C, γ) space a finer grid search is 
conducted centered around this region. The values of C and  quoted in the previous 
exercise were found using only a coarse search in the (C, γ ) space. You can try and 
improve upon these values by performing a finer search around them. 
(Don’t let γ be set too much higher than 8. High values of γ may produce good results on 
the training data but the learned classifier doesn’t generalize so well. Why?) 
 

 
 
 
 


