
INF 4300 - Exercise for Friday 29.10.2010
Statistics and classification using Matlab

Goal

This exercise aims to learn you the basics of the PRTools toolbox and how it can be used
to do simple classification and clustering tasks. This exercise will also introduce you to the
LIBSVM toolbox. Please read the Stuff to learn and try out the commands there, before
you start doing the exercises.

Stuff to learn

Installing PRTools, LIBSVM and exercise datasets

PRTools can be downloaded from http://prtools.org/download.html, or by adding prtools to
the Matlab path; addpath('/local/opt/matlab/ifi/toolbox/prtools'). Add
~inf4300/prdatasets as well. Useful for this exercise is also
~inf4300/prdatasets/Hu and ~inf4300/prdatasets/ddata

Download LIBSVM including a simple Matlab interface from
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#matlab. Follow the installation
instructions included. (I suggest you place all the files in a sub-directory, in your current
Matlab working directory, called libsvm/. Note that the binaries available for this package
will only run on linux and windows operating systems.)

Data structures

The MATLAB language usually works with the MATLAB array object type. The 2 -
dimensional array – a matrix – is the most common type (although N-dimensional arrays
are allowed).
The standard operations are defined as the matrix operations (a scalar is regarded as a
1x1 matrix). For example:

C=A^-1 * B

This equation first calculates the inverse of matrix A and then multiplies the result with
matrix B. Matrix C is the result. The object-oriented structure in MATLAB allows us to
define specific functions, operators, and object classes of our own. The PRTools 4.0
toolbox does this, and defines two classes (dataset and mapping) with the corresponding
operators and functions.

In PRTools the easiest way to apply a mapping W to a dataset A is by A*W. The matrix
multiplication symbol * is overloaded here. The operation may also be written as
map(A,W). Like anywhere else in MATLAB, concatenations of operations are possible,
e.g. A*W1*W2*W3, and are executed from left to right.

Datasets

PRTools deals with sets of objects represented by vectors in a feature space. The central
data structure is a so-called dataset. It consists of a matrix of size m by k, where m row

http://prtools.org/download.html�
http://www.csie.ntu.edu.tw/~cjlin/libsvm/#matlab�

vectors representing the objects given by k features each. Attached to this matrix is a set of
m labels (strings or numbers), one for each object and a set of k feature names (also strings
or numbers), one for each feature. Moreover, a set of prior probabilities, one for each class,
is stored. Objects with the same label belong to the same class. In most help files in
PRTools, a dataset is denoted by A. Almost all routines can handle multi-class objects.
Some useful routines to handle datasets are:

dataset Define dataset from data matrix and labels
gendat Generate a random subset of a dataset
genlab Generate dataset labels
seldat Select a specified subset of a dataset
setdat Define a new dataset from an old one by replacing its data
getdata Retrieve data from dataset
getlab Retrieve object labels
getfeat Retrieve feature labels
renumlab Convert labels to numbers

Sets of objects may be given externally or may be generated by one of the data generation
routines in PRTools. Their labels may be given externally or may be the results of
classification. A dataset containing 10 objects with 5 random measurements can be
generated by:

>> data = rand(10, 5);
>> a = dataset(data)
10 by 5 dataset with 0 classes: []

In this example no labels are supplied, therefore no classes are detected. Labels can be
added to the dataset by:

>> labs = [1 1 1 1 1 2 2 2 2 2]'; % labs should be a column
>> a = dataset(a, labs)
10 by 5 dataset with 2 classes: [5 5]

Note that the labels have to be supplied as a column vector. A simple way to assign labels
to a dataset is offered by the routine genlab in combination with the MATLAB char
command:

>> labs = genlab([4 2 4], char('apple', 'pear', 'banana'))
>> a = dataset(a, labs)
10 by 5 dataset with 3 classes: [4 4 2]

Note that the order of the classes has changed. Use the routines getlab and getfeat to
retrieve the object labels and the feature labels of a. The fields of a dataset can be made
visible by converting it to a structure, e.g.:

>> struct(a)
data: [10x5 double]
lablist: [3x6 char]
nlab: [10x1 double]
labtype: 'crisp'

targets: []
featlab: [5x1 double]
featdom: {[] [] [] [] []}
prior: []
cost: []
objsize: 10
featsize: 5
ident: [10x1 double]
version: {[1x1 struct] '15-Nov-2005 10:06:44'}
name: []
user: []

In the online information on datasets (help datasets) the meaning of these fields is
explained. Each field may be changed by a set-command, e.g.

>> b = setdata(a, rand(10, 5));

Field values can be retrieved by a similar get-command, e.g.

>> classnames = getlablist(a)

In nlab an index is stored for each object to the list of class names lablist. Note that
this list is alphabetically ordered. The size of the dataset can be found by both size and
getsize:

>> [m, k] = size(a);
>> [m, k, c] = getsize(a);

The number of objects is returned in m, the number of features in k and the number of
classes in c. The class prior probabilities are stored in prior. It is by default set to the
class frequencies if the field is empty. Data in a dataset can also be retrieved by +a.

• Execute the commands given above to create the dataset a.
• Have a look at the help information of seldat. Use the routine to extract the banana
class from a and check this by inspecting the result of +a.

Datasets can be manipulated in many ways as with MATLAB matrices. So [a1;a2]
combines two datasets, provided that they have the same number of features. The feature
set may be extended by [a1 a2] if a1 and a2 have the same number of objects.

• Generate 3 new objects of the classes 'apple' and 'pear' respectively, and add them
to the dataset a. Check if the class size changes accordingly.
• Add a new, 6th feature to the whole dataset a.

Another way to inspect a dataset is to make a scatter plot of the objects in the dataset. For
this the function scatterd is supplied. This plots each object in a dataset in a 2D graph
using a colored marker when class labels are supplied. For example: scatterd(a).
When more than two features are present in the dataset, only the first two are used. To
obtain a scatter plot of two other features they have to be explicitly extracted first, e.g. a1 =
a(:,[2 5]); It is also possible to create 3D scatter plots.

• Use scatterd to make a scatter plot of the features 2 and 5 of dataset a.
• Make a 3-dimensional scatter plot by scatterd(a, 3) and try to rotate it by the mouse
after pressing the right toolbar button.

Classifiers

In PRTools datasets are transformed by mappings. These are procedures that map a set
of objects from one space into another. Often a mapping has to be trained, i.e. it has to be
adapted to a training set by some estimation or training procedures to minimize some error
for the training set.

An example is the principal component analysis that performs an orthogonal rotation
according to the directions with main variances in a given dataset (Principal component
analysis is mentioned here only as an example of mapping. The concept, though known to
some of you, will not be discussed in great detail in this course):

>> w = pca(a, 2)
Principal Component Analysis, 2 to 2 trained mapping --> affine

This just defines the mapping (‘trains’ it by a) for finding the first 2 principal components.

The fields of a mapping can be shown by struct(w). By typing help mappings more
information on mappings can be found. The mapping w may be applied to a or to another
10-dimensional dataset by:

>> b = map(a, w)
10 by 2 dataset with 3 classes: [4 4 2]

Instead of the routine map also the ‘*’ operator may be used for applying mappings to
datasets:

>> b = a*w
10 by 2 dataset with 3 classes: [4 4 2]

The ‘*’ operator may also be used for training. a*pca is equivalent with pca(a) and
a*pca([], 2) is equivalent to pca(a, 2).

A special case of mapping is a classifier. It maps a dataset to distances of a discriminant
function or to class posterior probability estimates. They can be used in an untrained as
well as in a trained mode. When applied to a dataset, in the first mode the dataset is used
for training and a classifier is generated, while in the second mode the dataset is classified.

Unlike mappings, fixed classifiers do not exist. Some important classifiers are:
qdc Quadratic classifier assuming normal densities (sigma unconstrained)
udc Quadratic classifier assuming normal densities with uncorrelated features
ldc Linear classifier assuming normal densities with equal covariance matrices
nmc Nearest mean classifier (sigma diagonal and equal)

• Generate a dataset a by gendath and compute the Linear classifier by w =

ldc(a). Make a scatter plot of a and plot the classifier by plotc(w), and the underlying
density estimate by plotm(w). Different colors for classifiers can be realized by adding a
color label, e.g. plotc(w, 'r'). Type help plotc for more information about the use of
color. Classify the training set by d=map(a, w) or d = a*w. Show the result on the screen
by +d.
This is a density estimate based classifier, and will after training give density estimators for
all classes in the training set. Estimates for objects in some dataset b can be found by d =
b*w. A posteriori probability estimates are found after normalisation to ensure that the
posterior probabilities sum to one. This is enabled by classc. So classc(map(a,w)),
or a*w*classc maps the dataset a on the trained classifier w and normalises the resulting
posterior probabilities. If we include training as well then this can be written in a one-liner
as p = a*(a*qdc)*classc. (Try to understand this expression: between the brackets
the classifier is trained. The result is applied on the same dataset). The label assigned by
the classifier can be found by labeld.

Classifier evaluation and error estimation
The following routines are useful to know for evaluation of classifiers:

testc test a dataset on a trained classifier
crossval train and test classifiers by cross validation
cleval classifier evaluation by computing a learning curve
gendat split a given dataset at random into a training set and a test set.
confmat calculate a confusion matrix for your classifier

A simple example of the generation and use of a test set is the following:
Load the mfeat_kar dataset, consisting of 64 Karhunen-Loeve coefficients measured
for 10*200 written digits (’0’ to ’9’). A training set of 50 objects per class (i.e. a fraction of
0.25 of 200) can be generated by:

>> a = mfeat_kar
MFEAT KL Features, 2000 by 64 dataset with 10 classes: [200 ... 200]
>> [trainset,testset] = gendat(a,0.25)
MFEAT KL Features, 500 by 64 dataset with 10 classes: [50 ... 50]
MFEAT KL Features, 1500 by 64 dataset with 10 classes: [150 ... 150]

50 × 10 objects are stored in trainset, the remaining 1500 objects are stored in testset.
Train the linear normal densities based classifier and test it:

>> w = ldc(trainset);
>> testset*w*testc

Compare the result with training and testing by all data:

>> a*ldc(a)*testc

which is probably better for two reasons. Firstly, it uses more objects for training, so a
better classifier is obtained. Secondly, it uses the same objects for testing as well a for
training, by which the test result is definitely positively biased. Because of that, the use of
separate sets for training and testing has to be preferred.

kNN and Parzen Density classifier (optional, Parzen Density very optional)
Generate a dataset as follows:

a = gendatb([50, 50])

Make a scatter plot of dataset a. Compute the mappings of a quadratic classifier based
on normal densities (qdc) and the Parzen classifier w = parzenc(a)
Plot the two classifiers on the same figure as that of the dataset.
Which of the two classifiers separates the classes better seeing from your plot? Explain
that based on the data distribution and the characteristics of the classifiers.

Start a second figure and repeat the same with the k-nearest neighbor classifier with
50- (w = knnc(a, 50)) and optimal- ([w, k_opt] = knnc(a)) nearest neighbor(s),
respectively. knnc calculates an optimal k for you. How do you think it does it? What is the
value of k_opt? Which of the two classifiers separates the classes better
seeing from your plot? Why?

The k-means algorithm
We will show the principle of the k-means algorithm graphically on a 2-dimensional
dataset. This is done in several steps.

1. Take a 2-dimensional dataset, e.q. a = gendatb;. Set k=4.
2. Initialise the procedure by randomly taking k objects from the dataset:

>> L=randperm(size(a,1)); L=L(1:k);

3. Now, use these objects as the prototypes (or centres) of k centres. Defining labels 1 to
k, the nearest mean classifier considers each object as a single cluster:

>> w=nmc(dataset(a(L,:),[1:k]’));

4. Repeat the following line until the plot does not change. Try to understand what
happens:

>> lab=a*w*labeld; a=dataset(a,lab); w=nmc(a); scatterd(a);plotc(w)

Repeat the algorithm with another initialisation, on another dataset and some values for k.
What happens when the nmc classifier in step 3 is replaced by ldc or qdc?
A direct way to perform the above clustering is facilitated by kmeans. Run kmeans on one
of the digit databases (for instance mfeat_kar) with k>=10 and compare the resulting
labels with the original ones (getlab(a)) using confmat.
Try to understand what a confusion matrix should show when the k-means clustering had
resulted into a random labeling. What does this confusion matrix show about the data
distribution?

Clustering by the EM-Algorithm "soft k-means" (very optional)

A more general version of k-means clustering is supplied by emclust which can be used
for several classification algorithms instead of nmc and which returns a classifier that may
be used to label future datasets in the same way as the obtained clustering.
The following experiment investigates the clustering stability as a function of the sample

size. Take a dataset a and compute for a given choice of the number of clusters k the
clustering of the entire dataset (e.g. using ldc as a classifier) by:

>> [lab,v] = emclust(a,ldc([],1e-6,1e-6),k);

Here v is a mapping that by d = a*v ’classifies’ the dataset according to the final clustering
(lab = d*labeld). Note that for small datasets or large values of k some clusters might
become too small (classsizes(d)) for the use of ldc. Instead nmc may be used. The
dataset a can now be given the cluster labels lab by:

>> a = dataset(a,lab)

This dataset will be used for studying the clustering stability in the following experiments.
The clustering of a subset a1 of n samples per cluster of a:

>> a1 = gendat(a,repmat(n,1,k))

can now be found from

>> [lab1,v1] = emclust(a1,ldc([],1e-6,1e-6));

As the clustering is initialized by the labels of a1, the difference e in labeling between a and
the one defined by v1 can be measured by a*v1*testc, or in a single line:

>> [lab1,v1]=emclust(gendat(a,n),ldc([],1e-6,1e-6)); e=a*v1*testc

Average this over 10 experiments and repeat for various values of n. Plot e as a function of
n.

Support vector machines
A simple guide to SVM classification can be found at
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, read this cursory to learn the
simplest parameters. Included in the LIBSVM package you installed is a simple example.
More details about this model can be found in LIBSVM FAQ
(http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html) and LIBSVM implementation document
(http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf).

Train and test on the provided data heart_scale, and inspect the output.

The 'svmtrain' function is called as
>> model = svmtrain(training_label_vector, ...
training_instance_matrix [, 'libsvm_options']);

 with parameters
• training_label_vector

o An m by 1 vector of training labels (type must be double).
• training_instance_matrix

o An m by n matrix of m training instances with n features.
o It can be dense or sparse (type must be double).

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf�
http://www.csie.ntu.edu.tw/~cjlin/libsvm/faq.html�
http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf�

• libsvm_options
o A string of training options in the same format as that of LIBSVM

and returns a model which can be used for future
prediction. It is a structure and is organized as [Parameters, nr_class,
totalSV, rho, Label, ProbA, ProbB, nSV, sv_coef, SVs]:

o Parameters: parameters
o nr_class: number of classes; = 2 for regression/one-class svm
o totalSV: total #SV
o rho: -b of the decision function(s) wx+b
o Label: label of each class; empty for regression/one-class SVM
o ProbA: pairwise probability information; empty if -b 0 or in one-class SVM
o ProbB: pairwise probability information; empty if -b 0 or in one-class SVM
o nSV: number of SVs for each class; empty for regression/one-class SVM
o sv_coef: coefficients for SVs in decision functions
o SVs: support vectors

If you do not use the option '-b 1', ProbA and ProbB are empty
matrices. If the '-v' option is specified, cross validation is
conducted and the returned model is just a scalar: cross-validation
accuracy for classification and mean-squared error for regression.

Prediction from this model can be done with

>> [predicted_label, accuracy, decision_values/prob_estimates] =...
svmpredict(testing_label_vector, testing_instance_matrix, model [,
'libsvm_options']);

• testing_label_vector

o An m by 1 vector of prediction labels. If labels of test data are unknown, simply
use any random values. (type must be double)

• testing_instance_matrix
o An m by n matrix of m testing instances with n features. It can be dense or

sparse. (type must be double)
• model

o The output of svmtrain.
• libsvm_options

o A string of testing options in the same format as that of LIBSVM.

>> load heart_scale.mat
>> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g
0.07');
>> [predict_label, accuracy, dec_values] = ...
svmpredict(heart_scale_label, heart_scale_inst, model);

For probability estimates, you need '-b 1' for training and testing:

>> load heart_scale.mat

>> model = svmtrain(heart_scale_label, heart_scale_inst, '-c 1 -g
0.07 -b 1');
>> [predict_label, accuracy, prob_estimates] =
svmpredict(heart_scale_label, heart_scale_inst, model, '-b 1');

Exercises

Scatterplotting

Load the 4-dimensional Iris dataset by a = iris and make scatterplots of all feature
combinations using the gridded option of scatterd. Try also all feature combination
using scatterdui. Plot in a separate figure the one-dimensional feature densities by
plotf. Identify visually the best combination of two features. Create a new dataset b that
contains just these two features. Create a new figure by the figure command and plot a
scatterplot of b.

Simple classification

From the dataset b, make a scatter plot. Compute the quadratic classifier based on normal
densities (qdc) and plot it on top of the scatter plot of the dataset. Repeat this for the
classifier assuming uncorrelated features (udc) and the linear classifier (ldc) based on
equal normal distributions. These classifiers should be plotted in different colors.
Plot the underlying density estimates. Do you understand why the different classifiers are
placed as they are?

Performance evaluation
In PRTools a dataset a can be split into a training set b and a test set c by the gendat
command, e.g. [b,c] = gendat(a,0.5). In this case, for each class 50% of the objects
are randomly chosen for dataset b and the remaining objects are stored in dataset c. After
computing a classifier by the training set, e.g. w = b*ldc, the test set c can be classified
by d = c*w. For each object, the label of the class with the highest confidence, or posterior
probability, can be found by d*labeld. E.g.:

>> a = gendath;
>> [b,c] = gendat(a,0.9)
Higleyman Dataset, 90 by 2 dataset with 2 classes: [45 45]
Higleyman Dataset, 10 by 2 dataset with 2 classes: [5 5]
>> w = ldc(b); % the class names (labels) of b are stored in w
>> getlabels(w) % this rutine shows labels (classes labels are 1
% and 2)
>> d = c*w; % classify test set
>> lab = d*labeld; % get the labels of the test objects
>> disp([+d lab]) % show the posterior probabilities and labels

Note that in the last displayed column (lab) the labels of the classes with the highest
classifier outputs are stored. The average error in a test set can be directly computed by
testc:

>> d*testc

which may also be written as testc(d) or testc(c,w) (or c*w*testc).

Generate a training set a of 20 objects per class by gendath and a test set b of 1000
objects per class. Compute the performance of the Linear classifier by
b*(a*ldc)*testc. Repeat this for some other classifiers. For which classifiers do the
errors on the training set and test set differ most? Which classifier performs best? Do you
have any good explanation?

Another classification exercise
Load the IMOX data by a = imox. This is a feature based character recognition dataset.
What are the class labels? Split the dataset in two parts, 80% for training and 20% for
testing. Store the true labels of the test set using getlabels into lab_true
Compute three different classifiers on this set. Classify the test set using these classifiers.
Store the labels found by the classifiers for the test set into lab_test1 etc
Display the true and estimated labels by disp([lab_true lab_test])
Predict the classification error of the test set by observing the output. Verify this number
using testc.

NIST Digit clustering

Load a dataset A of 25 NIST digits for all classes 0-9. (Subsample the nist16 set)
Compute the 7 Hu moments. Perform a cluster analysis by kmeans with k = 10 neglecting
the original labels. Compare the cluster labels with the original labels using confmat.

The seven Hu invariants (Hu moments) can be calculated by:

% Mass and center
[c, mass] = masscenter(F);
% Central moments
mu20 = mupq(F, 2, 0, c);
mu11 = mupq(F, 1, 1, c);
mu02 = mupq(F, 0, 2, c);
mu30 = mupq(F, 3, 0, c);
mu21 = mupq(F, 2, 1, c);
mu12 = mupq(F, 1, 2, c);
mu03 = mupq(F, 0, 3, c);
mus = [mu20 mu11 mu02 mu30 mu21 mu12 mu03];
% Invariants
[sims,orthos,simorthos]= HUinvariants(mass, mus);

Color image segmentation by clustering

A full-color image may be segmented by clustering the color feature space. For example,
read the famous (in pattern recognition) Len(n)a image in a 256 × 256 version

>> a=lena;
>> show(a)

The image may be reconstructed as a full colour images by:

>> figure; imagesc(reshape(+I,256,256,3));

The 3 colours may be used to segment the images on its pixel values only. We use a small
subset for finding 4 clusters in the 3d color space:

>> testset=gendat(a,500) % create small test set
>> [d,w]=emclust(testset,nmc([]),4) % cluster the data
The retrieved classifier w may be used to classify all image pixels in the colour space:

>> lab = classim(a,w);
>> figure
>> imagesc(lab) % view image labels

Finally we will replace each of the clusters by its colour mean:

>> aa=dataset(a,lab(:)) % create labeled dataset
>> map=+meancov(aa) % compute class means
>> colormap(map) % set colour map accordingly

Note that the mean colours are very equal. Try to improve the result by using more
clusters.

Remember color dataset is three-dimensional. You can visualize your clustering, and the
original data by using scatterd

Texture segmentation (optional)
A dataset a in the MAT file texturet contains a 256x256 image with 7 features
(bands): 6 were computed by some texture detector; the last one represents the original
gray-level values. The data can be visualised by show(a,7). Segment the image by
[lab,w] = emclust(a,nmc,5). The resulting label vector lab may be reshaped into a
label image and visualised by imagesc(reshape(lab,a.objsize)). Alternatively, we
may use the trained mapping w, re-apply it to the original dataset a and obtain the labels by
classim, and display as an image, imagesc(classim(a*w)).
Investigate the use of alternative models (classifiers) in emclust such as the mixture of
Gaussians (using qdc) or non-parametric approach by the nearest neighbour rule
knnc([],1). How do the segmentation results differ and why? The segmentation speed
may be significantly increased if the clustering is performed only on a small subset of
pixels.

SVM and Digit Recognition I

To generate data for the exercise you will use the function SURF_LightB.m
and LoadImsComputeSURFB.m from the folder prdatasets. The function
SURF_LightB.m takes a parameter value ng that defines the size of the grid. Thus the
image is split into ng × ng equally sized regions. Secondly, the image pixel data is scaled
to be between 0 and 1.
Upon starting Matlab add the directory containing the digit figures and the directory
containing the SVM code to your path. Extract the feature vectors from the training and test
data:

>> [X train, lab train, X test, lab test] = LoadImsComputeSURFB(7);

To begin with we will construct a classifier to separate the digit “0” from
the other digits. Construct the indicator vector tt.

>> nt = size(X train, 1);
>> I = 1:nt;
>> dig = 0;
>> ind = I(lab train == dig);
>> tt = -1*ones(1, nt);
>> tt(ind) = 1;

The feature vectors should also be scaled so that each value is roughly
between -1 and 1.

>> X_train = X_train / 400;
>> X_test = X_test / 400;

First we will train a linear SVM. Set the parameters for the linear SVM and
use the data X train to train it. Note we have to transpose X train as the
function SVMTrain expects each column of the data array to correspond to
a feature vector.

Set parameters for a linear kernel, with cost 1 and shrinking heuristics.
>> params = ‘-s 0 –c 1 –t 0 –h 1 ‘;
>> model = svmtrain(X_train’, tt, params);

Next use the function svmpredict to evaluate the SVM you’ve just trained on the test
data X_test:

>> [TestLabels, accuracy, prob_estimates] = ...
svmpredict(X_test’,[],model);

Note that if we had given something input as test label we would get accuracy output.
Calculate the true positive and the false positive rate.

>> n test = length(lab train);
>> Ia = 1:n test;
>> pind = Ia(lab test == dig);
>> n tp = sum(TestLabels(pind) == 1);
>> tpr = n tp / length(pind);
>> nind = Ia(lab test _= dig);
>> n fp = sum(TestLabels(nind) == 1);
>> fpr = n fp / length(nind);
>> disp([tpr, fpr]);

Record these numbers and comment on the performance.

SVM and Digit Recognition II
As you probably noted the linear SVM did not produce good results. Next
we’ll try applying a kernel-SVM classifier where you’ll use a Gaussian/Radial
basis function as a kernel. Train and apply it by running the following
commands; RBF kernel, γ=1, cost 1 and shrinking heuristics

>> params = ‘-s 0 –c 1 –t 2 –g 1 –h 1 ‘;
>> model = svmtrain(X_train’, tt, params);

>> [TestLabels, accuracy, prob_estimates] = ...
svmpredict(X_test’,[],model);

Compute and record the true positive and false positive rate in this case.

At this stage you’re probably wondering why the SVM is not producing
better results. Don’t worry you are just encountering one of the weaknesses
of kernel-SVM. There are two parameters which have to be set in our current
set-up and these are vital to the performance of the resulting classifier. First
there is the width of the Gaussian kernel γ:

𝐾(𝑥𝑖, 𝑥) = 𝑒−𝛾�|𝑥𝑖,𝑥|�
2

Secondly there is the value of the penalty term (C in the lecture) associated with the
misclassification of a training example included in the cost function the SVM training
process minimizes. A large penalty forces the SVM to misclassify as few of the training
examples as possible and may result in choosing a separating hyperplane with small
margin and these often do not generalize well.
While too small a penalty term results in a classifier with a large margin but that does not
discriminate between the two classes. Unfortunately, there is no good rule of thumb for
setting these two parameters and in general some form of exhaustive search is performed
over the space of (C, γ) values. Luckily, someone have performed a coarse exhaustive
search on your behalf. Thus run the training and testing process again. But this time set the
parameters such that
>> params = ‘-s 0 –c 2 –t 2 –g 4 –h 1 ‘;
that is with γ =4 and C=2. Record the true positive and false positive rate is this case.

Repeat the whole process for learning a SVM to discriminate between the
digit “8” and the other digits. Note in this case set γ =8 and C=2. Record
the true positive and false positive rate.

SVM and Digit Recognition III (very optional)

Some of you may be interested in how I learned the values for γ and C. This was done by
k-fold cross validation and here is its explanation.

First split the set of positive training examples into k subsets of equal size such that each
example appears in only one subset. Similarly split the set of negative training examples
into k subsets of equal size. Fix the values of γ and C. Use the first k −1 subsets of the
positive and negative examples to train an SVM. Apply this learned SVM to the kth subset
of positive and negative examples that you omitted from the training process and record
the number of true positives and false positives. Then retrain the SVM using all the training
data minus the (k − 1)th subset. Use the retrained SVM on the k − 1 subset and record the
number of true positives and false positives and add these to the numbers calculated for
the previously tested SVM. Repeat the process with the (k − 2)th subset omitted, then the
(k−3)rd and so on until you’ve omitted the 1st subset. Record the total number of true
positives and false positives you have found and use some combination of these two
numbers to obtain a score. (Here was used (number of true positives)- (number of false
positives)). This score process represents how good the parameter settings of and C
were. Repeat the process for different settings of and C. Then choose the setting which
produced the best score. Typically a loose grid search is performed with C=2−5, 2−3, ...
, 215 and γ=2−15, 2−13, ... , 23. That is you perform the process just described for

(C, γ) = (2−5, 2−15), (2−5, 2−13), (2−5, 2−11), ... , (2−5, 23), (2−3, 2−15), ...
,(215, 23)
and then when this search indicates a good region in the (C, γ) space a finer grid search is
conducted centered around this region. The values of C and quoted in the previous
exercise were found using only a coarse search in the (C, γ) space. You can try and
improve upon these values by performing a finer search around them.
(Don’t let γ be set too much higher than 8. High values of γ may produce good results on
the training data but the learned classifier doesn’t generalize so well. Why?)

