
INF 4300 - Exercise for Friday 05.11.2010  
Using data efficiently 
Goal 

This exercise aims to further improve your skills with using Matlab and additional toolboxes 
for pattern recognition. The main topics of this exercise is feature evaluation, selection and 
performance evaluation. Furthermore, the topic of linear feature extraction (PCA and LDA) 
will be studied. Please read the Stuff to learn and try out the commands there, before you 
start doing the exercises. Also, this exercise assumes you have completed the previous 
exercise. 

 
Stuff to learn 
 
PRTools  

Familiarize yourself with classfication and feature selection using PRTools. Make 
sure you understand the concepts of and are able to classify data using Gaussian ML 
classification (see:help ldc and help qdc). Make sure you know what a confusion matrix 
is and how you plot a scatterplot. Make/choose a simple example and plot a classification 
boundary on a scatterplot. Compare the results using different classification rules. Look at 
the help files of the different feature selection commands feateval, featrank, 
featselb, featself, featseli, featselm, featselo, and featselp. 

 
Feature Evaluation  

The routine feateval can be used to evaluate feature sets according to a criterion. For a 
given dataset, it returns either a distance between the classes in the dataset or a 
classification accuracy. In both cases it means that large values means good separation.  
Load the dataset biomed. How many features does this dataset have? How many  
possible subsets of two features can be made from this dataset? Make a script which loops 
through all possible subsets of two features and that creates for each combination  
a new dataset b. Use feateval to evaluate b using the Euclidean distance, the 
Mahalanobis distance and the leave-one-out error for the one-nearest neighbour rule.  
  
Find, for each of the three criteria, the two features that are selected by individual  
ranking (use featseli), by forward selection (use featself) and by the above 
procedure that finds the best combination of two features. Compute for each set of two 
features the leave-one-out error for the one-nearest neighbour rule by testk.  

 
Classifier evaluation and error estimation  

The following routines are useful to know for evaluation of classifiers:  
  
testc  test a dataset on a trained classifier  
crossval  train and test classifiers by cross validation  
cleval  classifier evaluation by computing a learning curve  
gendat  split a given dataset at random into a training set and a test set.  
confmat calculate a confusion matrix for your classifier  
  
A simple example of the generation and use of a test set is the following:  



Load the mfeat_kar dataset, consisting of 64 Karhunen-Loeve coefficients measured  
for 10*200 written digits (’0’ to ’9’). A training set of 50 objects per class (i.e. a fraction of  
0.25 of 200) can be generated by:  
  
>> a = mfeat_kar  
MFEAT KL Features, 2000 by 64 dataset with 10 classes: [200 ... 200]  
>> [trainset,testset] = gendat(a,0.25)  
MFEAT KL Features, 500 by 64 dataset with 10 classes: [50 ... 50]  
MFEAT KL Features, 1500 by 64 dataset with 10 classes: [150 ... 150]  
  
50 × 10 objects are stored in trainset, the remaining 1500 objects are stored in testset.  
Train the linear normal densities based classifier and test it:  
  
>> w = ldc(trainset);  
>> testset*w*testc  
  
Compare the result with training and testing by all data:  
  
>> a*ldc(a)*testc  
  
which is probably better for two reasons. Firstly, it uses more objects for training, so a 
better classifier is obtained. Secondly, it uses the same objects for testing as well a for 
training, by which the test result is definitely positively biased. Because of that, the use of 
separate sets for training and testing has to be preferred.  
  

Exercises 
 
Performance estimates  

Write one or more m-functions that evaluate confusion matrices and report overall error, 
average error normalized according to class size, precision, recall and kappa.   

  
Learning curves introduction  

A learning curve displays the estimated performance as a function of the number of 
training examples. An easy to use routine for studying the learning curve of a classifier on 
a given dataset is cleval:  
  
>> a = gendatb([30 30])  
>> e = cleval(a,ldc,[2 3 5 10 20],3)  
  
This generates at random training sets of sizes [2 3 5 10 20] per class out of the dataset a 
and trains the classifier ldc. The remaining objects are used for testing (so in this example 
the set a has to contain more than 20 objects per class). This is repeated 3 times and the 
resulting errors are averaged and returned in the structure e. This is ready made for 
plotting the so called learning curve by:  
  
>> plotr(e)  
 
  

An entire classification system (optional - but probably useful in the future)  
In this exercise a classification system will be developed for classifying objects that belong 
to four different categories: ring, nut-6 (6-sided), nut-4 (4-sided), and bolt. A vision  



system is available that acquires images of these objects. Using some digital image 
processing techniques (not part of this project) the images are segmented. After that, each 
imaged object is represented by a connected component in the resulting binary (logical) 
image. Figure 1 shows already segmented images containing rings, nuts-6, nuts-4 and 
bolts. These images are available for training and evaluation, thus providing us with a 
labeled dataset of 121 objects per class.   
The classification will be based on so-called normalized Fourier descriptors. Which 
describe the shapes of the contours of the objects. The basic idea to consider the contour 
as a periodic curve in 2D which can be represented by a Fourier series. The Fourier 
descriptors are the coefficients of the Fourier series and may be used to create descriptors 
that are invariant to rotation and scale.  The software provided with the project can 
produce many descriptors per objects. The goal of your design is to find a classifier that 
strives for minimal error rate.   
The software that is provided within this project can calculate up to 64 descriptors denoted 
by  Zk ,where k ranges from −31 up to +32 . The descriptors are normalized such that they 
are independent from the orientation and the size. However,  Z0 and Z1 should not be 
used, because Z0 does not depend on the shape (but rather on the position) and Z1 is 
always one (because it is used for the normalization). The given Matlab function, 
ut_contourfft, offers the possibility to calculate only a selection of the available 
descriptors.  
Each image in Figure 1 shows the segments of 121 objects. Thus, extraction of the 
boundary of each segments, and subsequent determination of the normalized Fourier 
descriptors yields a training set of 4×121=484 labelled vectors, each vector having 62 
elements. An image can be transformed into a set of measurement vectors with the 
following fragment of code:  

  
fdlist = [-31:-1 2:32]; % exclude Z0 and Z1  
imrings = imread('rings.tif'); % open and read the image file  
figure; imshow(imrings); title('rings');  
[BND,L,Nring,A] = bwboundaries(imrings,8,'noholes');% extract the 
boundaries  
FDS = ut_contourfft(BND,'fdlist',fdlist,'nmag'); % calculate the FDs  
Zrings = zeros(Nring,length(fdlist)); % allocate space  
for n=1:Nring  
     Zrings(n,:) = FDS{n}'; % collect the vectors  
end  

  
Note that the function bwboundaries is part of the image processing toolbox in matlab so 
you need a computer that has access to this toolbox to be able to import your data. 
Likewise pieces of code are needed to get the measurement vectors from the other 
classes. The filenames of the four images are: rings.tif, nuts6.tif, nuts4.tif 
and bolts.tif. The function ut_contourfft accompanies the images. These images 
and function are convenienty stored under the ~inf4300/prdatasets/ path.  

  
a) Write the code needed to import the data into Matlab and then into  PRTools format. 
Hint: use repmat to create the array with labels. For instance, repmat('ring',[Nring 
1]) creates an array of Nring entries containing the string ‘ring’.  
  
b) Use 5-fold cross validation to estimate the performance of the kNN classifier for k=3 
when the classifier is using the ten Fourier descriptors Z2,Z3,…,Z11 or some other subset 



of features.  
  
c) Compute a confusion matrix which gives an impression which classes are likely to be 
confused. Evaluate precision, recall and kappa of your confusion matrix.   
  
d) Use the cell array approach and crossvalidation to compare several of the classifiers 
you know on one half of the dataset. Keep the other half for testing after training is finished. 
How does the crossvalidation results on the training half compare to the classification 
results on the testing half. Discuss.  
 

Simple feature selection 
First we will create an artificial dataset for which we know there are just a few informative 
features. Find out what the characteristics of gendatd are and create a dataset containing 
40 objects. Next, we rotate this dataset clockwise around the origin 45_. We do this by 
multiplying the dataset by the rotation matrix:𝑅 = �1 1

1 −1� 
Make a new dataset 𝑏 from the old dataset by multiplying it with this rotation matrix (note 
the sizes of the matrices, and be careful in which order you multiply the matrices!). Check 
your results by making a scatterplot of the two datasets. Finally add 4 extra 
non-informative features to dataset b. Use the procedure gendats to make two classes 
which are exactly on top of each other (see help files). Check the size of the new dataset (it 
should be 40 ×  6 now!) and make scatterplots of features (1, 2), (1, 3) and (4, 5). 
 
Given this artificial dataset, would you prefer to use forward or backward feature selection? 
Any ideas on choice of criteria 𝐽 to be used? Try forward and backward selection on this 
dataset using different criteria. 
To find out which features have been selected, extract the feature indices from the 
mapping 𝑤 by: +w  Do you find the correct features in both cases? What results do you 
get by individual feature selection? 

 
Feature Selection  

Load the glass dataset. Rank the features by the sum of the Mahalanobis distances, 
usingindividual selection (featseli), forward selection (featself) and backward 
selection (featselb). The selected features can be retrieved from the mapping w by:  
  
>> w = featseli(a,’maha-s’);  
>> getdata(w)  
  
Compute for each feature ranking an error curve for the linear gaussian classifier by 
clevalf.  
  
>> rand(’seed’,1); e = clevalf(a*w,ldc,[],[],5)  
  
The random seed is reset to make the results for different feature sequences w 
comparable. The command a*w reorders the features in dataset a according to w. In 
clevalf, the classifier is trained by a randomly subsampled version of the given dataset. 
The remaining objects are used for testing. This is repeated 5 times. All results are stored 
in a structure e that can be visualised by plotr(e).  
Plot the result for the three feature sequences obtained by the three selection methods in a 
single figure by plotr. Compare this error plot with a plot of the ’maha-s’ criterion value 



as a function of the feature size (use feateval).  
 
Custom feature evaluation (very optional) 

It is possible to make feateval use other measures of distance (for example 
Bhattacharrya or divergence) by a bit of creative Matlab programming. (Hint: you have two 
options; modify the feateval routine or wrap your distance measure into a ”‘classifier”’ 
mapping) 

 
Feature scaling  

Besides classifiers that are hampered by the amount of features, some classifiers are 
sensitive to the scaling of the individual features. This can be studied by an experiment in 
which the data is good and one in which the data is badly scaled.  
In relation with sensitivity to badly scaled data, we have three types of classifiers:   

1. classifiers that are scaling independent  
2. classifiers that are scaling dependent, but that can compensate badly scaled data 

by large training sets.  
3. classifiers that are scaling dependent, that cannot compensate badly scaled data 

by large training sets.  
 
First, generate a training set of 400 points for two normally distributed classes with 
common covariance matrix, as follows:  
  
>> a = gauss(400,[0 0; 2 2],eye(2))  

  
Prepare another dataset b by scaling down the second dimension of dataset a as follows:  
  
>> x = +a; x(:,2) = x(:,2).*0.01; b = setdata(a,x);  
  
Study the scatter plot of a and b (e.g. scatterd(a)) and note the difference when the 
scatterplot of b is scaled properly (axis equal).  
Which of the following classifiers belong to which type (1,2 or 3)?:  
nmc  knnc([],1),qdc  
It may help if you plot the decision boundaries in the scatter plots of a and b and play with 
the training set size.  
  
Verify your answer by the following experiment: Generate an independent test set c and 
compute the learning curves (i.e. an error curve as function of the size of the training set) 
for each of the classifiers. Use training sizes of 5,10,20,50,100 and 200 objects per class. 
Plot the error curves. Use scalem for scaling the features on their variance. For a fair 
result, this should be computed on the training set b and applied to b as well as to the test 
set c:  
  
>> w = scalem(b,’variance’); b = b*w; c = c*w;  
Compute and plot the learning curves for the scaled data as well. Which classifier(s) are  
independent of scaling? Which classifier(s) can compensate bad scaling by a large training 
set?  

 
 
Principal component analysis 



Given a dataset 𝑥 =  (𝑥1, 𝑥2) =  (1, 2), (3, 3), (3, 5), (5, 4), (5, 6), (6, 5), (8, 7), (9, 8) 
compute the principal components. Use for example the covariance estimate Σ𝑥  =
1
𝑛
∑ (𝑥𝑖 − 𝜇)𝑇(𝑥𝑖 − 𝜇)𝑛
𝑖=1 . Eigenvalues are zeros of the characteristic equation Σ𝑥𝑣 = 𝜆𝑣 ⇒

|Σ𝑥 − 𝜆𝐼| = 0 
 

 
 
Eigenvalues should become 𝜆1 =  9.34, 
𝜆2 =  0.41 and eigenvectors 

�
𝑣11
𝑣12� = [0.81,0.59]𝑇 , �

𝑣21
𝑣22�

= [−0.59,0.81]𝑇 
 
 
 
 
 
 
 
 
 
 
 

PCA and KLM 
Familiarize yourself with pca and klm. The latter performs a Karhunen-Loeve mapping - 
which is another name for Principal Components. However the two methods differ in the 
way they estimate the covariance matrix, klm uses the average covariance matrix 
whereas pca uses the total data covariance matrix. What is the difference, and what 
results does it give? 
 

More complex feature extraction 
Take a simple 2-dimensional dataset, for instance gendats. Compute the covariance 
matrix of the data, using c = cov(+x), and finally compute the eigenvectors, by [v,d] = 
eig(c). Now make a scatterplot of the data. Can you interpret the results you get from 
eig? Map your data onto these new axis and make a scatterplot of the new dataset. Is it 
what you expected? Use the command pca and compare the results with your results. 

 
Generate the dataset a = gendatd(20,20,2,10). Compare the datasets you obtain 
from pca and klm. 

 
Use the command iris to load a classification problem. Study the dataset. Use the 
command fisherm to perform a LDA on the dataset. Select the two best features using 
PCA/KLM, LDA and feature selection methods. Compare performances of the different 
methods on a testset. (Hint: To create a subset of the data to obtain a test set - use 
gendat) 

 


