

...

🕥 SINTEF

Practical information – Web page

- http://www.uio.no/studier/emner/matnat/ifi/INF4300/
 - Information about the course
 - Lecture plan
 - Lecture notes
 - Exercise material
 - Course requisite description
 - Exam information
 - Messages

SINTEF

Practical information – Course material

- All foils will be made available on the course web site.
- The foils define the course requisites.
- Exercises will be introduced as we go along.
- No books defining all course requisites
 - Gonzalez & Woods: Digital Image Processing, 3rd

SINTEF Practical information – Exercises The ordinary exercises are NOT obligatory. Probably a good idea to do them anyway © The ordinary exercises can be solved in any programming language, solutions will be provided in Matlab. One large exercise (term project) Individual work

Counts for 30% percent of the final grade

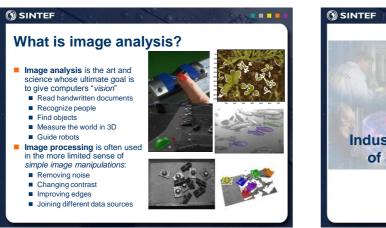
() SINTEF

Practical information - Exam

Written or oral exam depending on the number of students
 Final exam counts for 70% of the final grade
 The term project counts for the remaining 30%

...

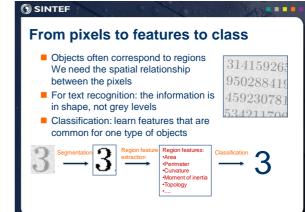
- No written sources of information available at exam
- Follow the web page for updates on term paper and exam

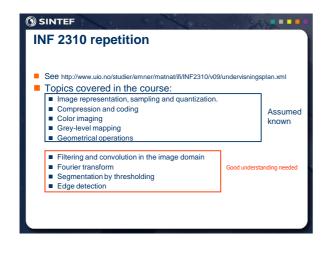

SINTEF

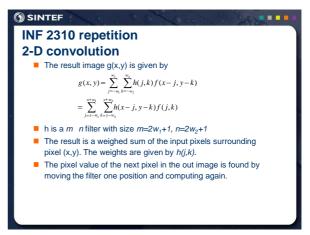
282

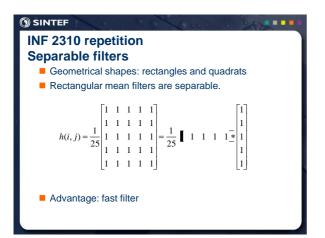
Practical information – Term project

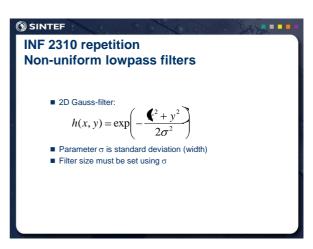
- Sadly, plagiarism and cheating on term papers is very common
- Therefore you are obliged to read the document at the following web address, and attach a copy to your submissions
 - Norwegian: <u>http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf</u>
 English: <u>http://www.ifi.uio.no/studinf/skjemaer/declaration.pdf</u>
- However: Using available source code and applications is perfectly ok and will be credited as long as the origin is cited
- The term project is individual work, and the handed in result should clearly be your own work

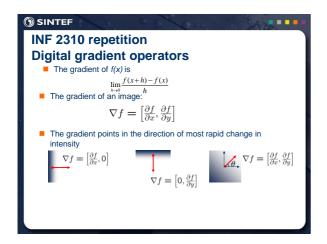

() SINTEF	T	1			C C Later :		
Practical information - Lecture plan							
	23 24	25 26	27	28	29 Introduction and preliminaries	Asbjørn	
september	30 31	01 02	03	04	05 Features from images I	Fritz	
					12 Features from images II	Fritz	
	13 14	15 16	17	18	19 Region and edge based segmentation	Fritz	
	20 21	22 23	24	25	²⁶ The Hough transform	Fritz	
oktober	27 28	29 30	01	02	03 No lecture		
	<mark>04</mark> 05	<mark>06</mark> 07	08	09	10 Object descriptors	Fritz	
	11 12	13 14	15	16	17 Learning from data I	Asbjørn	
	18 19	20 21	22	23	24 Learning from data II	Asbjørn	
	25 26	27 28	29	30	31 Regularization	Asbjørn	
november	01 02	03 04	05	06	07 Tracking and flow	Asbjørn	
	08 09	10 11	12	13	14 No lecture		
	<mark>15</mark> 16	17 18	19	20	21 Course summary	Fritz/Asbjørn	

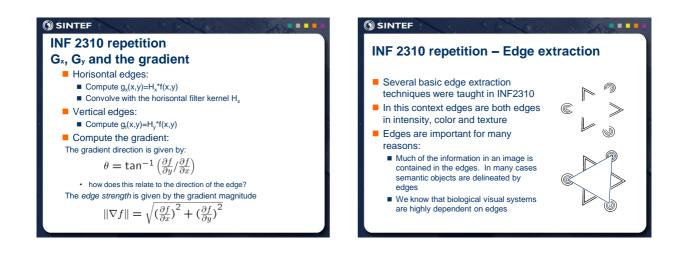







Tom Kavli, Chief Scientist, <u>tka@sintef.no</u> Asbjørn Berge, Research Scientist, <u>asbe@sintef.no</u>





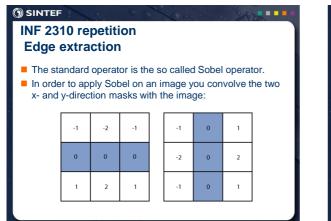
INF 2310 repetition						
Gradient operators						
Prewitt-operator						
$\begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$						
Sobel-operator						
$H_{s}(i,j) = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix} H_{y}(i,j) = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$						
Frei-Chen-operator						
$H_{x}(i,j) = \begin{bmatrix} 1 & 0 & -1 \\ \sqrt{2} & 0 & -\sqrt{2} \\ 1 & 0 & -1 \end{bmatrix} H_{y}(i,j) = \begin{bmatrix} -1 & -\sqrt{2} & -1 \\ 0 & 0 & 0 \\ 1 & \sqrt{2} & 1 \end{bmatrix}$						

() SINTEF

INF 2310 repetition Edge extraction

- The edge detection operators are operators that produce strong responses in image regions where pixel values (in intensity images) change rapidly.
- In such, they are digital approximations to the gradient operator: $\nabla f(x)$

$$\nabla \mathbf{f}(x,y) = \begin{bmatrix} G_x \\ G_y \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix}$$


() SINTEF

INF 2310 repetition Edge extraction

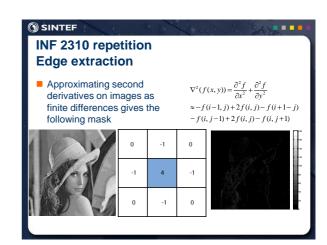
- The gradient is a measure of how the function f(x,y) changes as a function of changes in the arguments x and y.
- The gradient vector points in the direction of maximum change.
- The length of this vector indicates the size of the gradient:

$$\nabla f = |\nabla \mathbf{f}| = \sqrt{G_x^2 + G_y^2}$$

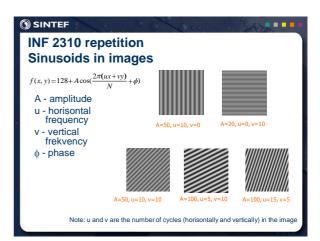
. .

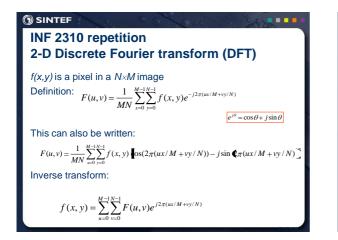
() SINTEF **INF 2310 repetition Edge extraction** This will give you two images, one representing the horizontal components of the gradient, one representing the vertical component Grayscale image of the gradient Thus using Sobel you can derive both the local gradient magnitude and direction

() SINTEF

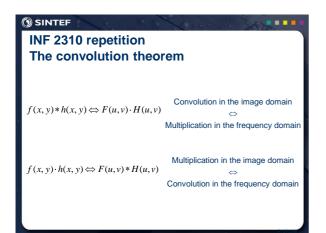

INF 2310 repetition Edge extraction

- Another frequently used technique for edge detection is based on the use of discrete approximations to the second derivative
- The Laplace operator is given by

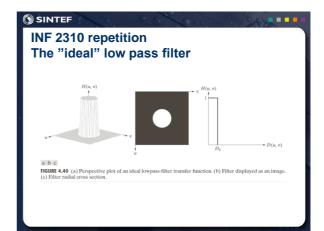

 ∇

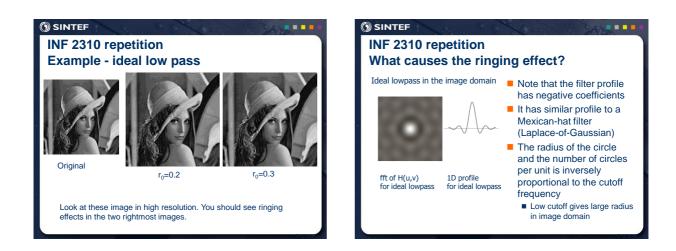

$$d^{2}(f(x,y)) = \frac{\partial^{2}f}{\partial x^{2}} + \frac{\partial^{2}f}{\partial y^{2}}$$

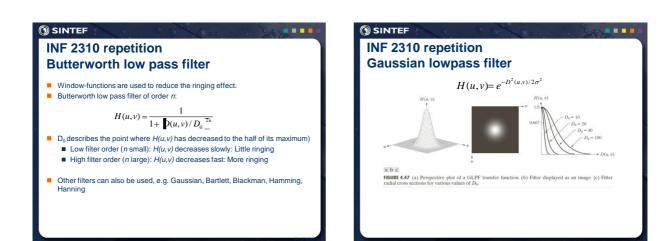
This operator changes sign where f(x,y) has an inflection point, it is equal to zero at the exact edge position

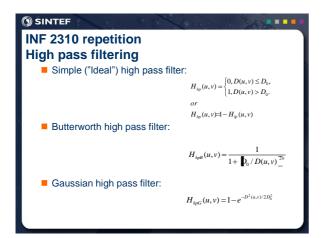


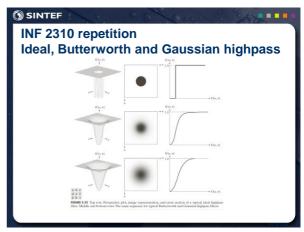
() SINTEF **INF 2310 repetition Edge extraction** Since this operator is based on second derivatives it is extremely sensitive to noise. To counter this it is often combined with Gaussian prefiltering in order to reduce noise. This gives rise to the so called Laplacian-of-Gaussian (LoG) operator.

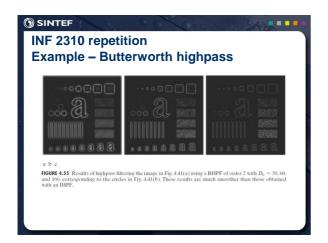


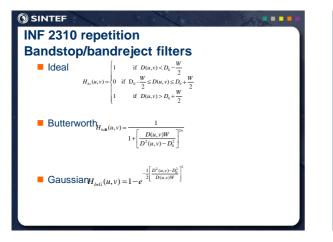

() SINTEF

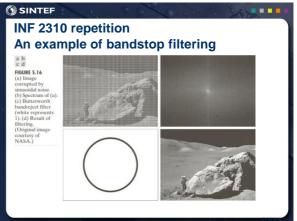

INF 2310 repetition Filtering in the frequency domain

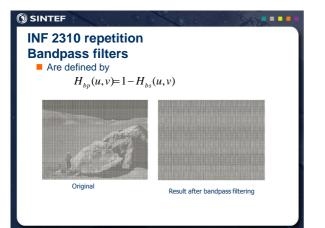

1. Multiply the image by $(-1)^{x+y}$ to center the transform

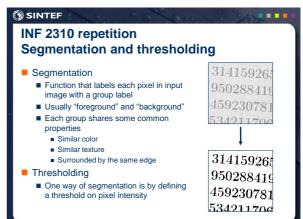

- 2. Compute F(u,v) using the 2-D DFT
- 3. Multiply F(u,v) by a filter H(u,v)
- 4. Compute the inverse *FFT* of the result from 3
- 5. Obtain the real part from 4
- 6. Multiply the result by $(-1)^{x+y}$

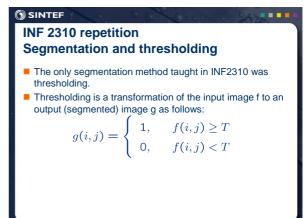


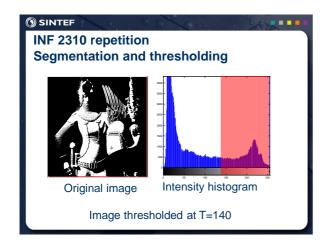


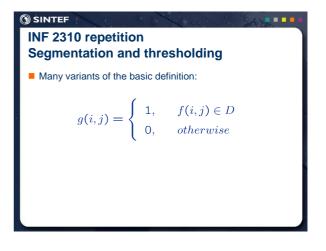












SINTEF
INF 2310 repetition
Segmentation and thresholding
Many variants of the basic definition:

$$g(i,j) = \begin{cases}
1, f(i,j) \in D_1 \\
2, f(i,j) \in D_2 \\
... \\
n, f(i,j) \in D_n \\
0, otherwise
\end{cases}$$

SINTEF

INF 2310 repetition Segmentation and thresholding

Many variants of the basic definition (semithresholding):

$$g(i,j) = \begin{cases} f(i,j), & f(i,j) \ge T \\ 0, & otherwise \end{cases}$$

() SINTEF

INF 2310 repetition Segmentation and thresholding

- This seemingly simple method must be considered with some care:
 - How do you select the threshold, manually or automatically?
 - Do you set a threshold that is global or local (on a sliding window or blockwise)?
 - Purely local method, no contextual considerations are taken
- Automatic threshold selection will be covered later
 Otsu's method
 - Ridler-Calvard's method
- Local thresholding methods will also be covered
 - Local applications of Otsu and Ridler-Calvard
 - Niblack's method

() SINTEF

INF 2310 repetition Segmentation and thresholding

Remember that you normally make an error performing a segmentation using thresholding:

...

. . .

🕥 SINTEF

Sy 💻 🗖 🗖

INF 2310 repetition Segmentation and thresholding

- Assume that the histogram is the sum of two distributions b(z) and f(z), b and f are the normalized background and foreground distributions respectively, and z is the gray level.
- Let B and F be the prior probabilities for the background and foreground (B+F=1).
- In this case the histogram can be written p(z)=Bb(z)+Ff(z).

() SINTEF

INF 2310 repetition Segmentation and thresholding

In this case the probabilities of erroneously classifying a pixel, given a threshold t, is given by:

$$E_B(t) = \int_{-\infty}^t f(z) dz$$

$$E_F(t) = \int_t^\infty b(z) dz$$

() SINTEF

INF 2310 repetition Segmentation and thresholding

The total error will be:

$$E(t) = F \int_{-\infty}^{t} f(z)dz + B \int_{t}^{\infty} b(z)dz$$

Using Leibnitz's rule for derivation of integrals and by setting the derivative equal to zero you can find the optimal value for t:

$$\frac{E(t)}{dt} = 0 \Rightarrow Ff(T) = Bb(T)$$

() SINTEF

INF 2310 repetition Segmentation and thresholding E(t)

$$\frac{D(t)}{dt} = 0 \Rightarrow Ff(T) = Bb(T)$$

- This is a general solution that does not depend on the type of distribution.
- Remember that in the case of f and b being Gaussian distributions, it is possible to solve the above equation explicitly.

SINTEF INF 2310 repetition Segmentation and thresholding

In INF2310 we briefly introduced two methods (Ridler-Calvard and Otsu) for determining the thresholds automatically

....

These and other methods will be covered in much more detail in the INF4300 lectures