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Plan for today 

 What is clustering and classification? 

 Clustering example: K-means algorithm 

 Classification example: Support vector machines 

Recommended reading after this lecture 

 Pattern recognition introduction 

 R.C. Gonzales and R.E. Woods: Digital Image Processing, 3rd ed, 

2008. Prentice Hall. ISBN: 978-0-13-168728-8. Chapter 12, 12.2.3 

very cursory 

 Clustering 

 T. Hastie, R. Tibshirani and J. H. Friedman: The Elements of 

Statistical Learning, 2001. Springer Verlag. ISBN: 978-0-38-

7952840. Ch. 14.3 

 Support Vector Machines 

 C.J.C. Burges. A tutorial on support vector machines for pattern 

recognition. Data Mining and Knowledge Discovery, 2(2):955-974, 

1998. http://citeseer.nj.nec.com/burges98tutorial.html 
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Copying human vision is hard 

 Humans are incredible  

pattern recognizers 

 In fact the brain will usually 

suggest  patterns even in noise 

 Many optical illusions can be 

explained by your brain choosing 

the ”closest match” to something 

familiar  

 Can we copy this innate ability to 

complete patterns with 

computers? 
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What is pattern recognition? 

 Informal definition: Based on 

measurements from images or image 

regions, create a system that finds the 

closest match to something we have 

seen before. Usually referred to as 

classification. 
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Region features: 
•Area 

•Perimeter 

•Curvature 
•Moment of inertia 

•Topology 

•.... 

Region feature  
extraction 

Segmentation Classification 
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What you already know 

 Features 

 Measurements of some property with the objects we study 

 You understand why and how to extract features from images 

 Several features measured for each object makes a vector 

 Feature vectors can be visualized with scatterplots 

 Basic linear algebra 

 Some simple matrix manipulations should not scare you  

 You understand how to translate algebra into code 

 

 

 

 

6 



2 

Classification and clustering 
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Category “A” 

Category “B” 

Supervised classification 

 Predefined categories 

 Result is assignment to one 

 Training on previously seen examples 

 Prior knowledge can be applied 

Unsupervised classification 

 

 

 

 

 

 

 

 

 

 

 Define quality measure 

 Similarity / dissimilarity  

No predefined categories 

 No knowledge of category  

 

not similar to 

similar 

What is Cluster Analysis? 

 Finding groups of objects such that the objects in a 

group will be similar (or related) to one another and 

different from (or unrelated to) the objects in other 

groups 
Inter-cluster 
distances are 
maximized 

Intra-cluster 
distances are 

minimized 

Notion of a Cluster can be 

Ambiguous 

How many clusters? 

Four Clusters  Two Clusters  

Six Clusters  

Types of Clusterings 

 A clustering is a set of clusters 
 

 Important distinction between hierarchical and 
partitional sets of clusters  
 

 Partitional Clustering 
 A division data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset 

 Soft partitioning allows objects to participate in several 
subsets (clusters) 
 

 Hierarchical clustering 
 A set of nested clusters organized as a hierarchical tree  

Hierarchical Clustering 
Consider a sequence of 

partitions of the n samples 

into c clusters 

 The first is a partition into n 

cluster, each one 

containing exactly one 

sample 

 The second is a partition 

into n-1 clusters, the third 

into n-2, and so on, until 

the n-th in which there is 

only one cluster containing 

all of the samples 

 At the level k in the 

sequence, c = n-k+1. 

Data with 
clustering order 

and distances 

Dendrogram 
representation 

hclust Partition clustering 

 Assume we want k classes. 

 Assume we start with randomly 

located cluster centers 

 n datapoints into k classes means 

~nk allocations to test    iterative 

algoritm 

 

    General algorithm alternates: 

 

     Assignment step: Assign each 

datapoint to the closest cluster. 

 

     Refitting step: Move each cluster 

center to the center of gravity of 

the data assigned to it.al 

Assignments 

Refitted 

means 
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k-means Clustering 
 Each cluster is associated with a centroid (center point)  

 Each point is assigned to the cluster with the closest 
centroid 

 Number of clusters, k, must be specified 

 The basic algorithm is very simple 

kmeans K-means Algorithm 

Step 1: 

Choose k cluster centres, μk
(0), 

randomly 

 

Step 2: 

Assign each of the objects in x to 

the nearest cluster center μk
(i) 
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Recalculate cluster centres μk
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based on the clustering in 

iteration i 
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Step 4: 

If the clusters don’t change; 

μk
(i+1)≈ μk

(i) (or prespecified 

number of iterations i reached), 

terminate, else reassign - 
increase iteration i and goto step 

2. 

Step 2: 

Assign each of the objects in x to 

the nearest cluster center μk
(i) 
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based on the clustering in 

iteration i 
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Step 4: 

If the clusters don’t change; 

μk
(i+1)≈ μk

(i) (or prespecified 

number of iterations i reached), 

terminate, else reassign - 

increase iteration i and goto step 

2. 

 

BCS Summer 

School, 

Exeter, 2003 

Christopher M. Bishop 

Responsibilities 

 Responsibilities assign data points to clusters 

 

 

such that  

 

 

 Example: 5 data points and 3 clusters 

 

 

 

 

 

K-means Cost Function 

prototypes responsibilities 

data 

Minimizing the Cost Function 

 E-step: minimize    w.r.t. 

 assigns each data point to nearest prototype 

 M-step: minimize    w.r.t         

 gives 

 

 

 

 each prototype set to the mean of points in that cluster 

 Convergence guaranteed since there is a finite number of 

possible settings for the responsibilities 

Quality of K-means clustering 

 Most common measure is Sum of Squared Error (SSE) 

 For each point, the error is the distance to the nearest cluster 

 To get SSE, we square these errors and sum them. 

 

 

 

 x is a data point in cluster Ci and mi is the representative point for cluster 
Ci  

  can show that mi corresponds to the center (mean) of the cluster 

 Given two clusterings, we can choose the one with the smallest error 

 One easy way to reduce SSE is to increase K, the number of clusters 

  A good clustering with smaller K can have a lower SSE than a poor clustering 
with higher K 


 


K

i Cx

i
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Two different K-means 

Clusterings 
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Importance of Choosing Initial 
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Limitations of K-means: Differing 

Sizes 

 
 

 

 

Original Points K-means (3 Clusters) 



5 

Limitations of K-means: Differing 

Density 

 
 

 

 

Original Points K-means (3 Clusters) 

Limitations of K-means: Non-

globular Shapes 

 
 

 

 

Original Points K-means (2 Clusters) 

Problems with Selecting Initial 

Points 

 If there are K ‘real’ clusters then the chance of selecting 
one centroid from each cluster is small.  

 Chance is relatively small when K is large 

 If clusters are the same size, n, then 
 

 
 
 
 

 For example, if K = 10, then probability = 10!/1010 = 0.00036 

 Sometimes the initial centroids will readjust themselves in 
‘right’ way, and sometimes they don’t 

Solutions to Initial Centroids Problem 

 Multiple runs 
 Helps, but probability is not on your side 

 Sample and use other clustering methods to determine 
initial centroids 

 Select more than k initial centroids and then select among 
these initial centroids 
 Select most widely separated 

 Improved k-means with cluster merge and split 
(ISODATA) 

Classification 

30 

μk Σk 

We have k classes, and 

some initial training  data 

 

Task is now not to assign 

data into the class which it 

is most similar, but learning 

what is typical for each of 

the classes, and base a 

rule on that  

 

Fish sorting example 

 Task: create a computer system 

that sorts fish on conveyor belt 

according to species 

 Create a rule that enables us to 

decide ”salmon ” or ”sea bass” 

with minimum error 

 Steps in the process 

 Capture image 

 Isolate fish 

 Take measurements 

 Make Decision 
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Fish sorting – fish length 

•General knowledge : sea 

bass is usually longer than 

salmon 

•Define length of fish as a 

feature, and decide 

according to a treshold on 

length 

•Rule : fish = ”salmon” if 

length < l*  

•Set threshold l* such that 

it minimizes error  

Fish sorting – scale lightness 

•Average lightness of 

scales is also different 

between species 

•Does a treshold based on 

this lightness classify 

better?  

•Rule : fish = ”sea bass” if 

lightness > x*  

Fish sorting 

 Both features are 

inadequate 

 Combine the features, 

creating a feature 

vector (n-tuple) 

 Scatterplot replaces 

histograms 

 Features have 

complementary 

information   

 Txx 21x

Fish sorting – linear decision 

boundary 

 Create a rule that 

uses the feature vector 

to decide 

 For example a line, a 

decision boundary, and 

decide ”salmon” if a 

point is to the left of this 

boundary 

The goal was to minimize error? 

A complex rule that classifies all known points correctly can always be found 

Classifying new data with the perfect 

rule  

The new data is most likely ”salmon”, but classifies as ”sea bass” 
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The goal of classification 

 Classify new observations with minimum error 

 We train on available data, with the goal of minimizing 

error 

 Evaluate (test) classification on an ”unknown” dataset, 

measure generalization 

 We may face a tradeoff generalization ↔ error, when 

reducing the complexity of a classifier to generalize 

better 

A reasonable tradeoff 

How to design this rule? 

40 

Find probability estimates in data space 

What is the chance of seeing a salmon or a sea bass with these features? 

How to design this rule? 

41 

Bin and count, and divide by total 

What is the chance of seeing a salmon or a sea bass with these features? 

How to design this rule? 

42 

A histogram, chance is equal to bin value 

What is the chance of seeing a salmon or a sea bass with these features? 

How to design this rule? 

43 

This is in essence how statistical classifiers 

work, by modeling conditional probability.  
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Bayesian statistics – Decision making 

P(data) 

P(data|class) 

P(class|data) 

Pr(class 1)=0.3 
Pr(class 2)=0.2 

Pr(class 3)=0.5 

xkcd explains conditional probability 

45 

Another approach to classification 

 The first approach illustrated in this lecture is based on 

modeling the data in each class and using Bayes rule 

 Examples of this classification approach is 

 K-nearest neighbor 

 Statistical classifiers (usually called Gaussian) 

 Decision is made by comparing probabilities of the models 

and defining a rule as a «boundary» where the 

probabilities are equal.   

 What if we instead model the boundary directly?  

46 

Linear classification 

47 

)()( 
j

jj xwfwxfy


What is the best 

classification rule in 

form of a straight 

line?  

x2 

x1 

Classifier margin 

48 

)()( 
j

jj xwfwxfy


x1 

The margin of a 

classifier is the 

width you can 

increase the 

boundary before 

you hit a data point. 

  

x2 

x1 

Support vectors 

49 

)()( 
j

jj xwfwxfy


x2 

x1 

Large margin = good 

Maximum margin = best 

 

Slightly complex maths to 

prove, but feels intuitively 

right*  

 

Support vectors are those 

datapoints that the margin 

pushes up against. 

  

*Look up”Vapnik-Chernovenkis Dimension”, and you will find a proof that a related proposition is a good idea.  
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How to represent this in 

mathematical terms?  

 

 

And in m input dimensions? 

 

•Positive plane  

 

•Negative plane 

 

•Classifier from this  

Specifying a line and a margin  

50 
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
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}1:{  bwxx


Remember, we’re looking 

for the maximum margin. 

 

Lets call the margin width  

M, and calculate it from our 

positive and negative 

planes. Remember that the 

normal vector of a line is 

the gradient. I.e., in this 

case w 

 

We want to describe M in 

terms of w (and b).  

 

 

 

 

 

Margin width 
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x2 

x1 

y=+1 

y=-1 

}1:{  bwxx


M 

•Positive plane  

 

•Negative plane 

 

•w is orthogonal to the 

planes 

• Let x- be any point on the 

negative plane. 

• Let x+ be the closest point 

to x- on the positive plane. 

•Claim  

Margin width 

52 

x2 

x1 

y=+1 

y=-1 

}1:{ 0  wwxx


wxx


 

}1:{ 0  wwxx
 M 

x+ 

x- 

 

 

 

Margin width 
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•We have 

 

 

 

 

 

 

•Substitution 
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Margin width 

54 

x2 

x1 

y=+1 

y=-1 

M 
x+ 

x- 

So, given a guess of w and 

b we can 

•Check if all datapoints are 

in the correct half-planes 

•Compute the margin width 

 

So now we just need to 

write a program that 

chooses the best w and b 

from all possible!  

 

How? 

 

 

 

Margin width 

55 

x2 

x1 

y=+1 

y=-1 

x+ 

x- 

Assume R datapoints, each 

(xk,yk), where yk=+/- 1 

 

We will have R constraints 

 

 

 

and quadratic criterion for 

optimization 
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Find the ”optimal” linear 

classifier  

Hyperplane  

 

Distance from data point to 

plane 

 

 

Maximize the distance to 

the closest datapoint 

 

 

 

 

 

 

}0:{),( 00  wxwxwwH

)0(
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1
),( 0  wxw
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)0(
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1
),(minmax 0

, 0




wxw
w

Hx
iww


Precisely what we are looking for  
– but not very practical! 

Clever tricks for solving the problem 

Any positive multiple of (w,w0) defines precisely 
the same hyperplane H 

Thus we can arbitrarily redefine the least 

distance to the closest data point 
 

 

Implicitly, this means that the distances from the 

hyperplane to the closest points are  
 

 

 i.e. M=2/||w||   
Furthermore, we are looking for a classifier – so 

a reasonable request for our optimization 

problem is to demand that all points be on the 
correct side of the hyperplane, i.e.  

 

1||min 0 


wxw
i

||||/1 w

iwxwyi  1)( 0
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....and it reduces to a simple(?) 

quadratic optimization problem 

 The optimization problem can be written  
 

 

 
 

 

However, this problem has the same number 

of constraints as data points! 
 # parameters to optimize = feature space 

dimension  

Solution: Rewrite to the dual which is slightly 
simpler to solve 

i  1)( s.t.

2

1
min

0

, 0

 wxwy

ww

ii

T

ww
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Constrained optimization in 20 seconds 

 
If x0 is a solution to  

 

min
𝑥

𝑓(𝑥)  subject to 𝑔𝑖 𝑥 ≤ 0 for 𝑖 = 1, … , 𝑛 

 

there must exist a set of positive αi 
[1] such that the 

following is satisfied 

 

𝜕

𝜕𝑥
(𝑓 𝑥 +  α𝑖𝑔𝑖(𝑥)) 

𝑖
 

𝑔𝑖 𝑥 ≤ 0 for 𝑖 = 1,… , 𝑛 

𝑥 = 𝑥0 

 

[1] or else we would be allowed to violate the constraint we imply by g(x)<=0  

• Primal problem on Lagrangian form 

 

𝐿𝑝 =
1

2
𝑤𝑇𝑤 − α𝑖(𝑦𝑖 𝑤 ∙ 𝑥𝑖 + 𝑤0 − 1)

𝑛

𝑖=1
 

 

• Q & D explanation of the dual:  We want to minimize Lp w.r.t. w and w0 and 

maximize w.r.t. αi  

• We are looking for a saddle point in the loss function, i.e. derivatives of w and 

w0 are 0, so after some work we find that the following must hold at the 

solution:  

 α𝑖𝑦𝑖 = 0,𝑤 = α𝑖𝑦𝑖𝑥𝑖
𝑛

𝑖=1

𝑛

𝑖=1
 

• Substitute w into primal problem, and optimization problem is changed to 

maximizing  

𝐿𝑑 = −
1

2
   α𝑖α𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑛

𝑗=1

𝑛

𝑖=1
∙ 𝑥𝑗 + α𝑖

𝑛

𝑖=1
; α𝑖𝑦𝑖 = 0, α𝑖 ≥ 0

𝑛

𝑖=1
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Boring technical details 

The data only occurs as 

an inner product in this  

optimization! More on this later. 

Dual optimization problem 

The following quadratic program ready to be thrown to your 

favourite QP-solver  

 

 max
α

−
1

2
   α𝑖α𝑗𝑦𝑖𝑦𝑗𝑥𝑖

𝑛
𝑗=1

𝑛
𝑖=1 ∙ 𝑥𝑗+ α𝑖

𝑛
𝑖=1  

 s.t.    

 α𝑖 ≥ 0 ∀𝑖,  α𝑖𝑦𝑖 = 0𝑛
𝑖=1  
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Quadratic Programming 
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Quadratic criterion 

Subject to 

Ignore all this, the numerical computing 

nerds have it under control!  

 

(And apparently, they are having loads of 

fun constantly optimizing their solution!) 
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Interpretation of optimal α 
 We defined the hyperplane when deriving the 
dual  

 

𝑤 =  α𝑖𝑦𝑖𝑥𝑖
𝑛
𝑖=1   

 
Many α are zero because: 

 

α𝑖(𝑦𝑖 𝑤 ∙ 𝑥𝑖 +𝑤0 > 1 ⇒↓ 𝛼𝑖 ⇒↑ 𝐿𝑝 
 

Only α on the margin contribute to finding the 
hyperplane w ( these are called support vectors)  

 Classification of a new data point x* can be 

found from the support vectors only without 
explicitly forming w 

 
𝑤 ∙ 𝑥∗ + 𝑤0 =  α𝑖𝑦𝑖𝑥𝑖𝑖:α𝑖>0

∙ 𝑥∗ + 𝑤0 

𝑓 𝑥∗ = sgn(  α𝑖𝑦𝑖𝑥𝑖
𝑖:α𝑖>0

∙ 𝑥∗ +𝑤0) 

Fun(?) mnemonic : physical interpretation of α 

as forces with sign y on a plane sheet along the 

normal vector. Optimal solution for α satisfies 
force and torque equilibrium 
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But, this classifier is not very useful?! 

 Correct! In real world problems classes are usually 
overlapping, and the best boundary might not even be 
linear 

 Two hacks allow the SVM ideas to be useful anyway  

 Hack #1, soft margin: 
 Allow a certain amount of training points to violate constraint (slack 

variables in the QP)  

 Thus nonseparable classes can be used in the training data 

 Hack #2, kernels: 
 Since the data occurs in the QP in form of an inner product, we 

may measure the distance in some other space of our choice, 
resulting in the fitting of a nonlinear boundary 

 

 

 

Problem: data is never perfect 
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x1 

x2 

y=+1 

y=-1 

x+ 

x- 

Different clusters usually 

overlap, or the problem 

would be super simple. 

 

Intuitive solution 

Minimize w•w, while 

minimizing the number of 

training set errors. 

 

min w•w + C(#train errors) 

 

NO! Two things to minimize 

at the same time usually 

creates a mess. 

ww
M 




2

Cannot be expressed  
as a quadratic program!  

(Solving will be slow) 

 

Does not differentiate errors  

between near misses and far off 

Hack #1: The soft margin 

 Allow some datapoints to violate the constraint 
by an amount ξi 

 Primal problem becomes 

 
 

 

 

 
 C is a cost of misclassification when training 

 The dual is just adjusted for this slack giving 

the QP an upper bound on each α 
 

 

 
 

 

The equation for the hyperplane stays the same 

(but use only the points where α < C) 
But, no clear interpretation of α anymore, points 

inside the margin take the limit value C (due to ξ 

nonnegativity constraint), and thus are support 
vectors as well! 
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Hack #2: Kernels 

 Recall that in Ld  the data 

only occurs as an inner 

product 

 

 

 So, presumably, there is 

nothing wrong with 

transforming to another 

basis for evaluation of this 

inner product! 
Screenshot of applet at http://svm.cs.rhul.ac.uk/pagesnew/GPat.shtml 
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x=0 

More general decision boundaries 

Suppose a simple 1-D dataset 

Positive “plane” Negative “plane” 

x=0 

More general decision boundaries 

The best classifier found is hardly a surprise 

Harder 1-dimensional dataset 

x=0 

Points are not linearly separable. Now what? 

Harder 1-dimensional dataset 

x=0 

),( 2

kkk xxz

Transform the data points from 1-dim to 2-dim by some 
nonlinear basis function (called Kernel functions) 

Harder 1-dimensional dataset 

x=0 
),( 2

kkk xxz

These points are linearly separable now!   

Boundary can be found by QP 77 

Data transformation  

General SVM approach: 

 Transform to a higher 
dimensional space, and solve 
a linear problem 

 Usually, the space where 
your problem is linearly 
solvable is much higher 
dimension, and thus hard 
work to evaluate 

Plots made by J. Wickman 
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Popular kernels 

 Polynomial 

 

 Gaussian RBF 

 

 Sigmoid (not PD for all parameter choices) 

 

 Specialized kernels for measuring string distance and so 
on is popular in text classification and related fields 

 Furthermore, combinations of kernels by sum or product 
produces valid kernels, these are usually called composite 
kernels 

 

p

jiji xxxxK )1(),( 

)]2/(||||exp[),( 22 jiji xxxxK 

p

j

T

iji xxxxK )tanh(),(  
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Kernelized SVMs  

 Change the dual optimization problem to 

 

 

 

 

 The resulting classifier is changed accordingly 
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Typical classifier design with 

SVMs 
 Scale data to a  {0..1} domain 

 Treat your QP solver nice by giving it smaller inner products to eat 

 Choose kernel 
 Actually quite hard, as there does not seem to be any theoretical 

guidelines here. RBF is regarded as a fairly robust choice.    

 Adjust parameters 
 Grid search guided by crossvalidation is usually your only option 

for parameter choices 

 Rule of thumb[1] when using Gaussian RBFs;  
search  C={2-5, 23, ..., 215} and σ ={2-15, 2-13, ..., 23}  

 

[1] http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf 82 

Pros / cons of SVMs  

 Advantages 
 Easy to apply on any problem! 

 Powerful implementations freely available[1] 

 Kernels can extend classifier into non-numerical tasks 

 Regularization built into cost function 

 Scales relatively well to high dimension 

 Parameter tuning is straightforward 

 Drawbacks 
 Choice of kernel is difficult and problem dependent 

 Slack variables is a heuristic approach to dealing with non-separability 

 Kernelization turns the classifier into a black-box 

 The scale of the optimization problem is directly related to training set size 

 

[1]  http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
 http://svmlight.joachims.org/ 
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Multiple classes? 

 Although the optimization problem can be 
rewritten to handle multiple classes, several 
authors seem to agree that a one-vs-one 
approach is the best approach for extending 
the classifier 

 Solve the task by searching a tree of 
classifiers or by voting  

 Several other approaches have been 
proposed, but all can be described as a tree 
of classification tasks 

 

 

 

 

 

What did you learn today?   

 A very simple, but in practice very useful general algorithm 

for clustering data, the K-means 

 The general idea of using optimization to design a 

classification rule, Support Vector Machines 

 At the exam you will be expected to be able to describe 

these two algorithms 

 The exercise for this lecture will introduce you to computer 

tools that hide a lot of the details covered 

84 


