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Motivation for exploring data and reducing 
dimensionality 

Dimensionality reduction 

Feature extraction 

 Feature selection 

Classifier performance and errors 

 Estimating error 

 Confusion matrix 

 Training and test dataset, and how to efficiently use 
your data.  

 Comment on complexity  generalization 
performance tradeoff 

 Outliers / rejection and doubt 
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The ”curse” of dimensionality 

 Very simple example, three class classification problem, 9 

samples 

 Divide the space into bins and classify to majority 

 



The ”curse” of dimensionality 

 Keep the bin resolution, and increase dimensionality 

 3 bins in 1D increases to 32 bins in 2D 

 Roughly 3 examples per bin in 1D,  if we want to preserve the density of 
examples we now need 27 samples! 



The ”curse” of dimensionality 

 The problem escalates 

rapidly! 

 81 examples needed to 

preserve density 

 If we use the original amount of 

samples (9), 2/3 of the feature 

space is empty!  



The ”curse” of dimensionality 
 In practice, the curse means that, for a given sample size, 

there is a maximum number of features one can add before 

any classifier starts to degrade. 

 

 

 

The big but 

resulting 

from space 

being empty 



How do we beat the ”curse of dimensionality”? 

 Generate few, but informative features 

 Careful feature design given the application 

 Solve a simpler problem 

 Reducing the dimensionality 

 Feature selection 

 Feature transforms 

 Regularization 

 

 Faced with model choices. Need performance metrics 

(error measures) and methods to evaluate these.  



Feature evaluation and selection 
 Why reduce the number of features we use to describe the 

data? 

 Countering overfitting 
 More room for samples to reside in, when dataset 

dimensionality increases 

 Reducing variance in parameter estimates 
 Want to use as many samples as possible to estimate each 

parameter in the model 

 In the extreme case – make estimates numerically 
stable 
 Samples ~ dimensionality of data means that e.g. covariance 

matrix at risk of being singular and impossible to invert  

 Common rule of thumb  
 To get reasonable estimates we need a number of samples 5-

10 times the dimensionality 



Evaluating classification performance 

 To choose the best classifier for a task, we need to define 

some metrics.  

 There is no superior classifier for all kinds of problems, so 

we’re stuck with using heuristics to make a choice.  

 Some classification approaches have parameters we can 

tune using these heuristics 

 We would like to know what kind of performance we can 

expect on new (unseen) data  



Overall error 

 One common way of defining the quality is overall error rate 

 Usually, it is a weighted average of errors from each class weighted by 

class prior 

 

 

 What would happen if? 

 We define error as number of correct samples ratioed by the 

total number of samples? 

 Our prior estimates are ”wrong”?  

 E.g. “my classifier gives right answers 80% of the time” Is it 

good? Why (not)? What happens if 80% of the data has the 

“N” label and my classifier always say “N”? 
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Confusion matrix 

 A convenient way of evaluating classifiers – avoiding such 

pitfalls - is the confusion matrix 

 Plot the true class labels versus the class labels assigned 

by the classificator 

 From this we can read the distribution of incorrectly 

classified samples 
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Confusion matrix 

Class ω1 Class ω2 Class ω3 Total 

Class ω1 80 15 5 100 

Class ω2 5 140 5 150 

Class ω3 25 50 125 200 

Total 110 205 135 450 

True class labels 
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Confusion matrix – derived measures of 

classification accuracy 

Class ω1 Class ω2 Class ω3 Total 

Class ω1 80 15 5 100 

Class ω2 5 140 5 150 

Class ω3 25 50 125 200 

Total 110 205 135 450 

True class labels 
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 Overall accuracy 

 Makes sense to evaluate normalized by (true) class 
size 

 !! Many researchers do not, however! 

 Precision 

 How accurate (precise) is the classification on each 
class? 

 #”correct label ω”/#”total classified label ω” 

 Look at rows 

 Recall 

 What is the chance of choosing correctly within each 
class? 

 #”correct label ω”/#”total true label ω” 

 Calculate from the columns  

 Kappa 

 How much better is the classifier than random 
guessing? 

 Compare diagonal of your confusion matrix with one 
due to random chance 
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Outliers and doubt 

 Two rather vague errors in a classification 

problem is outliers and doubt samples 

We might want an ideal classifier to report 

 ’this sample is from class l’ (usual case) 

 ’this sample is not from any of the classes’ (outlier) 

 ’this sample is too hard for me’ (doubt/reject) 

 The two last cases should lead to an rejection of 

the sample 

rejectc 



Outliers 

 Outliers are heuristically defined as 
”..samples which did not (or are thought 
not to have) come from the assumed 
population of samples”  

 The outliers can result from some 
breakdown in preprocessing (or even 
before we aquire an image) 

 One way to deal with outliers is to model 
them as an own class, for example a 
gaussian with a very large variance, and 
estimate prior probability from the training 
data 

 Another approach is to decide on some 
threshold on the aposteriori – and if a 
sample falls below this threshold for all 
classes, then declare it an outlier.  
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Doubt samples 

 Doubt samples are samples for which the 
class with the highest probability is not 
significantly more probable than some of 
the other classes (e.g. two classes have 
essentially equal probability). 

 Classify as doubt if p(x|i)P(i) < 1-c, 
where c is given by the user.  

 c must be in the range [0, K-1/K] if we 
have K classes. 

 Some classification software can allow the 
user to specify thresholds for doubt 

 Other software choose the simpler solution 
of just guessing 
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Training and test dataset, and how to 

efficiently use your data. 

 In the ideal case we want to maximize the size of the 

training and test dataset 

 Obviously there is a fixed amount of available data with 

known labels 

 A very simple approach is to separate the dataset in two 

random subsets, but we can do better! 

 The number of features for each object is an important 

factor with regards to the amount of available data 



Back to good use of training data 

 “Hold out”, ok for large (>1000 objects) datasets 

 Simply put away a part of the training data, say 1/3 of the 

samples chosen randomly – train on the 2/3 remaining, 

and evaluate classifier performance (error and so on) on 

the 1/3.  

 Can repeat this a couple of times, and report the average 

of repetitions. 

 Problem: repeated draws overlap 
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Crossvalidation / Leave – n - Out 

 A very simple (but computationally complex) improvement 

on the hold-out 

 Train the classifier on a set of N-n samples 

 Divide the dataset into blocks of n samples 

 Test the classifier on the n remaining samples 

 Repeat  n/N times (dependent on subsampling) rotating through 

data 

 Report average performance on the repeated experiments 

crossval 
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CV example: A regression problem 

 𝑦 = 𝑓 𝑥 + 𝑛𝑜𝑖𝑠𝑒 

 Can we learn 𝑓 from the 

data? 

 Consider three models 

 Linear 

 Cubic 

 «Connect-the-dots» 

(piecewise linear) 

20 



Linear regression 
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Cubic model 
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Which model is best 
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The test set method 
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The test set method 
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The test set method 
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The test set method 
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The test set method 



LOOCV (Leave-one-out-Crossvalidation) 
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LOOCV (Leave-one-out-Crossvalidation) 
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LOOCV (Leave-one-out-Crossvalidation) 
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LOOCV (Leave-one-out-Crossvalidation) 
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LOOCV (Leave-one-out-Crossvalidation) 
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LOOCV (Leave-one-out-Crossvalidation) 
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LOOCV (Leave-one-out-Crossvalidation) 
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LOOCV (Leave-one-out-Crossvalidation) 
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k-fold Crossvalidation 

 Randomly break the dataset into 𝑘 partitions (in our example we’ll 

have 𝑘 = 3 partitions colored red,green and blue) 

38 



k-fold Crossvalidation 
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k-fold Crossvalidation 

40 



 How many blocks to divide the data in?  

 More is usually better, but trade-off with computational complexity 

 Usually five or ten blocks is used, often denoted 5-CV, 10-CV 

 Average, and spread, of classification error can be reported 

 Can be designed to guarantee samples from each class. 

(Stratification)  

 The logical extreme of crossvalidation is to leave only one 

sample out each repetition 

 Extremely time consuming 

 Since all samples are visited once, no bias from random 

subsampling 

 Stratification impossible  

 

Crossvalidation / Leave – n - Out 
crossval 



Exploratory data analysis 

 For a small number of features, 

manual data analysis to study 

the features is recommended.  

 Choose intelligent features. 

 Evaluate e.g. 

  Error rates for single-feature 

classification 

 Scatter plots 

Scatter plots of feature 

combinations 

scatterdui 



What are good features? 

 Clearly, we need to choose good features 

 How do we quantify feature quality? 

 A good feature is simple to ”learn” 

 This is often related to class separation 



Class separation 

 Measure distance between all points or just class means? 

 Many distance measures are ”pairwise” 

 Use average or minimum? 

 All these distance measures can be represented as a scalar J, also 
called an ”objective function” 



Typical class separation measures 

 Euclidean distance 
 distance between pair of means 

 Mahalanobis distance 
 sometimes called statistical distance 

 distance between pair of classes weighed by probability density 

 Inter/intra class distance 
 Measure ratio of distance between class means and class ”size”  

 Classifier accuracy 
 How good does a classifier perform on the dataset? 

 Evaluate with hold-out or cross-validation 
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Distance matrices 

 Once a distance measure is 
defined, we can calculate the 
distance between objects.  
These objects could be 
individual observations, groups 
of observations (classes)  

 For N objects, we then have a 
symmetric distance matrix D 
whose elements are distances 
between objects i and j. 
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Euclidean distance 

 A possible distance 
measure for spaces 
equipped with a 
Euclidean metric 

 For two dimensions 
(variables), this is just the 
hypotenuse of a right-
angle triangle… 

…while for p dimensions, 
it is the hypotenuse of a 
hyper-triangle. 
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Multivariate distances 

between classes: the 

Euclidean distance 

 Calculates the Euclidean 
distance between two 
“points” defined by the 
multivariate means of two 
classes of p variables. 

 Does not take into account 
differences among classes in 
within-class variability nor 
correlations among variables. 
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Inter/intra class distance 

 A simple measure of class separation is inter/intra class 

distance 

 Assumptions 

 discriminative information in mean differences 

 class scatter distribution similar for all classes  
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Mahalanobis distance 
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 Similar to inter/intra is a distance measure based on the 

Gaussian distribution 

 Assumptions 

 weigh mean distance by covariance estimate 

 pooled covariance estimate 

 Natural extension allowing different covariances 

(Bhattacharyya distance) 
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Distances between observations 

and objects 
 We can also calculate a 

distance between an individual 
observation and some object, 
where the object may be 
another observation or a group 
mean. 

 The distance between an 
observation and a group can be 
used to define the probability 
that the observation belongs to 
the group (f.ex. when using the 
Mahalanobis distance)  X2 

X1 

Group 1 

Group 2 

Group mean 

Observation 
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Feature selection 

 Given a feature set x={x1, x2,…,xn} find a subset 

ym={xi1,xi2,…,xim} with m<n which optimizes an objective 

function J(Y) 
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featselm Feature selection 
 Search strategy 

 Exhaustive search implies      if we fix m 

and 2n if we need to search all possible m 

as well. 

 Choosing 10 out of 100 will result in 1013 

queries to J 

 Obviously we need to guide the search! 

 Objective function (J) 

 ”Predict” classifier performance 

 ”Predicting” is faster than actual 

classification 



Naïve feature search (individual selection) 

 Goal: select the two best features individually 

 Easy to devise a breakdown case 

 Any reasonable objective J will rank the features 
J(x1)>J(x2)≈J(x3)>J(x4) 

 Features chosen will be [x1,x2] or [x1,x2] 

 However – the only feature that provides complementary 
information to x1 is x4 

 Search is ”too greedy” 

 We need to compare choice with reference to already 
chosen features  

featseli 



Forward feature selection 

 Starting from the empty set, sequentially add the 
feature x+ that results in the highest objective function 
J(Yk + x+) when combined with the features Yk that 
have already been selected 

 

 Algorithm 

1. Start with the empty set Y0 = Ø; 

2. Select the next best feature  

3. Update Yk+1 = Yk + x+; k = k + 1 

4. If k less than number of features wanted goto 2 

 

 Forward selection performs best when the optimal 
subset has a small number of features 

 Forward selection cannot discard features that become 
obsolete when adding other features 
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Backward feature selection 

 Starting from the full set, sequentially remove the 
feature x- that results in the smallest decrease in  
objective function J(Yk - x

-) when combined with the 
features Yk that are already in the set 

 

 Algorithm 

1. Start with the full set Yk = X; 

2. Remove the worst feature  

3. Update Yk-1 = Yk + x-; k = k - 1 

4. If k more than number of features wanted goto 2 

 

 Backward selection performs best when the optimal 
subset has a large number of features 

 Backward selection cannot re-include features that 
become necessary when removing other features 

 Note that the decrease can also be an increase 
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Floating search (Pudil’s forward) 

 Starting from the empty set, include features by forward 
search, then backtrack using backward search until 
criterion decreases 

 

 Algorithm 

1. Start with the empty set Y0 = Ø; 

2. Do a forward step;  

 Yk+1 = Yk + x+; k = k + 1 

3. While we can increase criterion J; do backward 
step 

 Yk-1 = Yk + x-; k = k - 1 

3. If k less than number of features wanted goto 2 

 

 Can be extremely time-consuming 

 The improvement over other methods somewhat 
dependent on the feature set 
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Feature selection as dimension reduction 

 In some cases, a linear (or nonlinear 

combination) of features might be a 

better choice than using a subset of 

features 

 Consider however, that not all 

transforms are appropriate for 

dimension reduction for classification 

 However, feature selection has one 

interesting property – we represent the 

data on a set of dimensions that retain 

their meaning 



Using distance as a criterion  
 It might be tempting to rescale the features  

 Seems reasonable to make features scale-invariant? 

 For example, scale the data cloud to zero mean and unit 

variance 

 When using euclidean distance as a criterion this might change 

the clustering result, which one is the one we want? 

 Rescaling is not always a good idea, but should be 

considered if Euclidean distance is used 

 



Two approaches to dimensionality 

reduction 

60 

Feature extraction: create a subset of new features by 

combinations 

of the existing features 

Feature selection: choose a subset of all the features (the 

more 

informative ones) 



Vector spaces 

 A set of vectors u1, u2, ..., un is a basis for a vector 

space if any arbitrary vector x can be represented 

by a linear combination  

 x = a1u1 + a2u2 + ... + anun 

 The coefficients a1, a2, ..., an are called the 

components of vector x with respect to the basis ui 

 In order to form a basis, it is necessary and 

sufficient that the ui vectors be linearly 

independent 

 A basis ui is said to be orthogonal if 

 

 A basis ui is said to be orthonormal if 
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Linear transformation 

 A linear transformation is a mapping from a vector space 

XN onto a vector space YM, and is represented by a matrix 

 Given a vector x ϵ XN, the corresponding vector y on YM is 
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Eigenvectors and eigenvalues 

 Given a matrix AN×N, we say that v is an 

eigenvector if there exists a scalar λ (the 

eigenvalue) such that Av = λv  v is an 

eigenvector with corresponding eigenvalue λ 

 

 

 

 Zeroes of the characteristic equation are the 

eigenvalues of A 

 A is non-singular  all eigenvalues are non-zero 

 A is real and symmetric  all eigenvalues are 

real, and eigenvectors are orthogonal 
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Interpretation of eigenvectors and eigenvalues 

 The eigenvectors of the covariance matrix Σ  correspond to the principal axes 

of equiprobability ellipses. 

 The linear transformation defined by the eigenvectors Σ of leads to vectors 

that are uncorrelated regardless of the form of the distribution 

 If the distribution happens to be Gaussian, then the transformed vectors will 

be statistically independent 
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Dimensionality reduction 

65 

 Feature extraction can be stated as 

 Given a feature space xi  Rn find an optimal mapping 

 y = f (x) : Rn Rm with m < n. 

 An optimal mapping in classification :the transformed feature vector y 

yield the same classification rate as x. 

 The optimal mapping may be a non-linear function 

 Difficult to generate/optimize non-linear transforms 

 Feature extraction is therefore usually limited to linear transforms  

y = ATx 





























































n

m
x

x

x

aaa

aaa

aaa

y

y

y















2

1

111111

111111

111111

2

1



Signal representation vs classification 

 The search for the feature extraction mapping 𝒚 = 𝒇 (𝒙) is 

guided by an objective function we want to maximize. 

 In general we have two categories of objectives in feature 

extraction: 

 Signal representation: Accurately approximate the samples in a 

lower-dimensional space. 

 Classification: Keep or enhance class-discriminatory information in 

a lower-dimensional space. 
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Signal representation vs classification 

 Dimensionality reduction via 

feature extraction.  

 Principal Component Analysis 

(PCA), unsupervised 

 Emphasis is on representing 

the original signal as 

accurately as possible in the 

lower dimensional space. 

 Linear Discriminant Analysis 

(LDA), supervised 

 Emphasis is to maximize the 

class-discrimination in the 

lower dimensional space 
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Intuitive motivation for PCA 

Say we want to encode as accurately as possible the position of the 𝒎 

points in this cluster. Can do so exactly with their (𝒙, 𝒚)-coordinate 

locations of which there are 𝟐𝒎. However, say we only have bandwidth 

to record 𝒎 + 𝟒 numbers. Intuitively, what should these numbers 

represent ? 
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Intuitive motivation for PCA 

69 

Use 2 to encode the center point 



Intuitive motivation for PCA 

70 

Use 2 numbers to define a direction which 

corresponds to the 

direction in which there is most variation. 



Intuitive motivation for PCA 

71 

Let the other m numbers represent the distance of the 

point projected onto the line from the centre point. 



PCA – Principal component analysis 

 Reduce dimension while preserving signal variance (”randomness”) 

 Represent x as a linear combination of orthonormal basis vectors 

,𝜑1⊥ 𝜑2 ⊥ ⋯ ⊥ 𝜑𝑛-: 

𝑥 =  𝑦𝑖

𝑛

𝑖=0

𝜑𝑖 

 

 Approximate x with only m < n basis vectors. This can be done by 

replacing the components ,𝑦𝑚+1, 𝑦𝑚+2, … , 𝑦𝑛-𝑇with some pre-selected 

constants bi : 

𝑥 𝑚 =  𝑦𝑖

𝑚

𝑖=0

𝜑𝑖 +  𝑏𝑖

𝑛

𝑖=𝑚+1

𝜑𝑖 



 Approximation error is then 

∆𝑥 𝑚 = 𝑥 − 𝑥 𝑚  

=  𝑦𝑖
𝑛
𝑖=0 𝜑𝑖 −  𝑦𝑖

𝑚
𝑖=0 𝜑𝑖 +  𝑏𝑖

𝑛
𝑖=𝑚+1 𝜑𝑖=  (𝑦𝑖 − 𝑏𝑖)

𝑛
𝑖=𝑚+1 𝜑𝑖 

 

 Measure the representation error by mean squared magnitude of ∆𝑥, 
to find the basis vectors 𝜑𝑖 and constants 𝑏𝑖 that minimizes this error 

𝑀𝑆𝐸 𝑚 = 𝐸 Δ𝑥 𝑚 2

= 𝐸,   (

𝑛

𝑗=𝑚+1

𝑛

𝑖=𝑚+1

𝑦𝑖 − 𝑏𝑖) 𝑦𝑗 − 𝑏𝑗 φi
𝑇
φj- =  𝐸, 𝑦𝑖 − 𝑏𝑖

2- 

𝑛

𝑖=𝑚+1
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PCA – Principal component analysis 

 The optimal values of bi can be found by computing the partial 

derivative of the objective function and setting it to zero 
𝜕

𝜕𝑏𝑖
𝐸 𝑦𝑖 − 𝑏𝑖

2 = −2 𝐸 𝑦𝑖 − 𝑏𝑖 = 0 ⇒ 𝑏𝑖 = 𝐸,𝑦𝑖- 

 Therefore, we will replace the  discarded dimensions yis by their expected 

value 

 The mean-square error can then be written as 

𝑀𝑆𝐸 𝑚 =  𝐸,(𝑦𝑖 − 𝐸 𝑦𝑖 )2-

𝑛

𝑖=𝑚+1

 

=  𝐸,(𝜙𝑖
𝑇𝑛

𝑖=𝑚+1 𝑥 − 𝐸[𝜙𝑖
𝑇𝑥-)(𝜙𝑖

𝑇𝑥 − 𝐸[𝜙𝑖
𝑇𝑥-)- 

=  𝜙𝑖
𝑇𝐸,(𝑥 − 𝐸 𝑥 )

𝑛

𝑖=𝑚+1

𝑥 − 𝐸 𝑥 𝑇-𝜙𝑖 =  𝜙𝑖
𝑇Σ𝑥𝜙𝑖

𝑛

𝑖=𝑚+1
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PCA – Principal component analysis 

 We seek to find the solution that minimizes this expression subject to 

the orthonormality constraint, which we incorporate into the 

expression using a set of Lagrange multipliers 𝜆𝑖: 

𝑀𝑆𝐸 𝑚 =  𝜙𝑖
𝑇Σ𝑥𝜙𝑖

𝑛
𝑖=𝑚+1 + 𝜆𝑖(1 − 𝜙𝑖

𝑇𝜙𝑖)
𝑛
𝑖=𝑚+1  

 

 Minimization of this criterion can also be done by partial derivation 

𝜕

𝜕𝜙𝑖
𝑀𝑆𝐸 𝑚 =

𝜕

𝜕𝜙𝑖
 𝜙𝑖

𝑇Σ𝑥𝜙𝑖

𝑛

𝑖=𝑚+1

+  𝜆𝑖(1 − 𝜙𝑖
𝑇𝜙𝑖)

𝑛

𝑖=𝑚+1

 

= 2 Σ𝑥𝜙𝑖 − 𝜆𝑖𝜙𝑖 = 0,  as 
𝜕𝑥𝑇𝐴𝑥

𝜕𝑥
= 𝐴 + 𝐴𝑇 𝑥 

 Thus Σ𝑥𝜙𝑖 = 𝜆𝑖𝜙𝑖 defines an eigenvalue problem 
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PCA – Principal component analysis 

 We can then express the sum-square error as 

𝑀𝑆𝐸 𝑚 =  𝜙𝑖
𝑇Σ𝑥𝜙𝑖

𝑛

𝑖=𝑚+1

=  𝜙𝑖
𝑇𝜆𝑖𝜙𝑖

𝑛

𝑖=𝑚+1

=  𝜆𝑖

𝑛

𝑖=𝑚+1

 

 To minimize this measure, choose 𝜆𝑖s to be the smallest eigenvalues. 

 Therefore, to represent x with minimum error, choose the 

eigenvectors 𝜙𝑖 corresponding to the largest eigenvalues 𝜆𝑖. 
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PCA Dimensionality Reduction 

The optimal approximation of a random vector 𝑥 ∈ ℝ𝑛 by a linear 

combination of 𝑚(:𝑚 < 𝑛) independent vectors is obtained by 

projecting the random vector 𝑥 onto the eigenvectors 𝜙𝑖 corresponding 

to the largest eigenvalues 𝜆𝑖 of the covariance matrix Σ𝑥. 



A simple implementation of PCA 

 Given 𝑚 data points 𝑥𝑖 each of dimension 𝑛. 

 Compute the mean 𝜇 =
1

𝑚
 𝑥𝑖

𝑚
𝑖=𝑖  , and subtract it from each data point 

(centering): 𝑥𝑖
𝐶 = 𝑥𝑖 − 𝜇 

 Compute the data matrix 𝑋 where each column is a data point 𝑥𝑖
𝐶 

 Compute the covariance matrix, Σ =
1

𝑚
𝑋𝑋𝑇 

 Find the eigen-vectors and values of Σ 

 The principal components are the 𝑘 eigen-vectors with highest eigenvalues 
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PCA – very simple example 

 Assume data distributed as a 

Gaussian with 𝜇 = 0,5,2 𝑇 and  

Σ =
25 1 7
1 4 −4
7 −4 10

 

78 

The 3 pairs of the principal component projections - the first projection 

has largest variation. The PCA projections are de-correlated. 



Eigenfaces – PCA example 

 Let 𝑋 =  *𝑥1, 𝑥2, … , 𝑥𝑚+ be a collection of feature vectors. 

Each feature vector 𝑥𝑖 ∈ 0, 255 𝑁2
 corresponds to the 

pixel values of a visual image (𝑁 × 𝑁) of a face 
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Eigenfaces – PCA example 
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The mean face is 𝜇 =
1

𝑚
 𝑥𝑖
𝑚
𝑖=1 , and 

𝑥𝑖
∗ = 𝑥𝑖 − 𝜇 

 

The eigenfaces are the PCA basis 

vectors. These are found by finding 

the eigenvectors of 

Σ𝑥 =
1

𝑚
 𝑥𝑖

∗𝑥𝑖
∗𝑇

𝑚

𝑖=1
= (𝐴𝐴𝑇) 

 

Note 𝑥 may be huge (𝑁2  ×  𝑁2). Need to 

use a trick to finding the eigenvectors of 

𝐴𝑇𝐴 (of size 𝑚 ×  𝑚) since a lot of the 

eigenvalues must be zero. 

If 𝐴𝑇𝐴 𝑣𝑖  = 𝜆𝑖  𝑣𝑖 then 

Σ𝑥𝐴𝑣𝑖  =  𝐴𝐴𝑇 𝐴𝑣𝑖 =  𝐴 𝐴𝑇𝐴 𝑣𝑖 = 𝜆𝑖𝐴𝑣𝑖 ⇒
 𝐴𝑣𝑖 is an eigenvector of Σ𝑥 . 



Eigenfaces – PCA example 
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 Train system on 

verified faces, finding 

the eigenfaces 

 Map new faces onto 

eigenvectors 

 «Classify» by 

comparing coeffients / 

«distance».  



Linear discriminant analysis, LDA 

The objective of LDA is to 

perform dimensionality 

reduction while 

preserving as much of 

the class discriminatory 

information as possible. 
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LDA, two classes 

 Assume we have a set of 𝐷-dimensional samples *𝑥1, 𝑥2,· · · , 𝑥𝑁+, 𝑁1 

of which belong to class 𝜔1, and 𝑁2 to class 𝜔2. We seek to obtain a 

scalar 𝑦 by projecting the samples 𝑥 onto a line 𝑦 =  𝑤𝑇𝑥 

 Of all the possible lines we would like to select the one that maximizes 

the separability of the scalars 

83 



LDA, two classes 

 In order to find a good projection vector, we need to define 

a measure of separation between the projections 

 The mean vector of each class in 𝑥 and 𝑦 feature space 

𝜇𝑖 =
1

𝑁𝑖
 𝑥𝑥∈𝜔𝑖

, 𝜇𝑖 =
1

𝑁𝑖
 𝑦𝑦∈𝜔𝑖

=
1

𝑁𝑖
 𝑤𝑇𝑥 = 𝑤𝑇𝜇𝑖𝑥∈𝜔𝑖

 

 We could then choose the distance between the projected 

means as our objective function? 

𝐽(𝑤)  =  |𝜇 1  − 𝜇 2|  =  |𝑤𝑇(𝜇1 − 𝜇2)| 

 However, the distance between the projected means is 

not a very good measure since it does not take into 

account the standard deviation within the classes. 

 It is very easy to break this criterion!  

84 



LDA, two classes 
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LDA, two classes 

 The solution proposed by Fisher is to maximize a function that 

represents the difference between the means, normalized by a 

measure of the within-class scatter. 

 For each class we define the scatter, an equivalent of the variance, 

as 𝑠 𝑖
2 =  y − 𝜇 𝑖

2 𝑦∈𝜔𝑖
 

 Then the quantity (𝑠 1
2+𝑠 2

2) is called the within-class scatter of the 

projected examples. 

 The Fisher linear discriminant is defined as the linear projection 𝑤𝑇𝑥 

that maximizes the criterion function 
𝐽(𝑤)  =  𝜇 1  − 𝜇 2

2/(𝑠 1
2+𝑠 2

2) 

 Therefore, we will be looking for a projection where examples from the 

same class are projected very close to each other and, at the same 

time, the projected means are as far apart as possible. 
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LDA, two classes 
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LDA, two classes 

 To find the optimum projection 𝑤, we need to express 𝐽(𝑤) as an 

explicit function of 𝑤. 

 We define a measure of the scatter in multivariate feature space 𝑥, 

which are scatter matrices. 

𝑆𝑊 = 𝑆1 + 𝑆2, where 𝑆𝑖 =  𝑥 − 𝜇𝑖
𝑇(𝑥 − 𝜇𝑖) 

𝑥∈𝜔𝑖

 

 The matrix 𝑆𝑊 is called the within-class scatter matrix. 

 The scatter of the projection 𝑦 can then be expressed as a function of 

the scatter matrix in feature space 𝑥. 

𝑠 𝑖
2 =  y − 𝜇 𝑖

2 

𝑦∈𝜔𝑖

=  𝑤𝑇 𝑥 − 𝜇𝑖
𝑇 𝑥 − 𝜇𝑖 𝑤 = 𝑤𝑇𝑆𝑖𝑤 

𝑥∈𝜔𝑖

 

𝑠 1
2+𝑠 2

2 = 𝑤𝑇𝑆𝑊𝑤 

88 



LDA, two classes 

 Similarly, the difference between the projected means can 

be expressed in terms of the means in the original feature 

space 
 𝜇 1  − 𝜇 2

2 = 𝑤𝑇 μ1  −  μ2 μ1  −  μ2
𝑇𝑤 

 

 The matrix 𝑆𝐵 is called the between-class scatter. Note 

that, since 𝑆𝐵 is the outer product of two vectors, its rank is 

at most one. 

 We can finally express the Fisher criterion in terms of 𝑆𝑊 

and 𝑆𝐵 as 

𝐽 𝑤 =
𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
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LDA, two classes 

 To find the maximum of 𝐽 𝑤  we differentiate and set to zero 


𝜕

𝜕𝑤
𝐽 𝑤 =

𝜕

𝜕𝑤

𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
= 0 

⇒  (𝑤𝑇𝑆𝑊𝑤)
𝜕

𝜕𝑤
𝑤𝑇𝑆𝐵𝑤 − (𝑤𝑇𝑆𝐵𝑤)

𝜕

𝜕𝑤
,𝑤𝑇𝑆𝑊𝑤- = 0 

⇒ (𝑤𝑇𝑆𝑊𝑤)
𝜕

𝜕𝑤
𝑤𝑇𝑆𝐵𝑤 = (𝑤𝑇𝑆𝐵𝑤) 𝑆𝑊𝑤 

 From the definition of 𝑆𝐵 , 𝑆𝐵𝑤 ∝ (𝜇1 − 𝜇2) 

 Only direction of 𝑤 is important. Why? 

 Drop scale factors and multiply both sides by 𝑆𝑊
−1 

 
𝑤 ∝ 𝑆𝑊

−1(𝜇1 − 𝜇2) 
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Fishers Linear Discriminant (LDA) 

 Thus, the result of Fisher (1936) 

𝑤∗ = argmax
𝑤

𝑤𝑇𝑆𝐵𝑤

𝑤𝑇𝑆𝑊𝑤
= 𝑆𝑊

−1 𝜇1 − 𝜇2  

 Technically, it is not a discriminant, but rather a choice of 

projection down to one dimension where a treshold can be 

set. 
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LDA as a classifier 

 Use 𝑤 to construct a classifier. Project 

the training data onto the line 𝑤. Must 

find a threshold 𝜃 such that: 

𝑤𝑇𝑥 ≥ 𝜃 ⇒ 𝑥 belongs to class 𝜔1 
𝑤𝑇𝑥 < 𝜃 ⇒ 𝑥 belongs to class 𝜔2 

 How should we learn 𝜃? 

 Project all training data onto 𝑤 

 Choose the 𝜃 that minimizes training error 
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LDA, several classes 

 Fisher’s LDA generalizes very 

gracefully for 𝐶-class problems. 

Instead of one projection 𝑦, we 

now seek (𝐶 − 1) projections 

(𝑦1, 𝑦2, … , 𝑦𝐶−1) by means of 

(𝐶 − 1) projection vectors 𝑤𝑖, 

which can be arranged by 

columns into a projection matrix 

𝑊 = ,𝑤1𝑤2 … 𝑤𝐶−1-. 
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LDA, several classes 

 The generalization of the within- 

class scatter is 

𝑆𝑊 =  𝑆𝑖 , where 𝑆𝑖 =  𝑥 − 𝜇𝑖
𝑇

𝑥∈𝜔𝑖

𝐶

𝑖=1
𝑥 − 𝜇𝑖 ,  

and 𝜇𝑖 =
1

𝑁𝑖
 𝑥

𝑥∈𝜔𝑖

 

 

 The generalization for the between- 

class scatter is 

𝑆𝐵 =  𝑁𝑖 𝜇𝑖 − 𝜇 𝑇 𝜇𝑖 − 𝜇
𝐶

𝑖=1
, where 𝜇 =

1

𝑁
 𝑥

∀𝑥
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LDA, several classes 

 The projected samples have mean and 

scatter 

𝑆 𝑊 =   𝑦 − 𝜇 𝑖
𝑇

𝑦∈𝜔𝑖

𝐶

𝑖=1
𝑦 − 𝜇 𝑖 ,  

and 𝜇 𝑖 =
1

𝑁𝑖
 𝑦

𝑦∈𝜔𝑖

 

 

𝑆 𝐵 =  𝑁𝑖 𝜇 𝑖 − 𝜇 𝑇 𝜇 𝑖 − 𝜇 
𝐶

𝑖=1
, where 𝜇 =

1

𝑁
 𝑦

∀𝑦
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LDA, several classes 

 From our derivation for the two-class problem, we 

can write  

𝑆 𝑊 = 𝑊𝑇𝑆𝑊𝑊, 𝑆 𝐵 = 𝑊𝑇𝑆𝐵𝑊 

 Recall that we are looking for a projection that 

maximizes the ratio of between-class to within-

class scatter. Since the projection is no longer  

a scalar (it has 𝐶 − 1 dimensions), we then  

use the determinant of the scatter matrices to 

obtain a scalar objective function: 

𝐽 𝑊 = 
|𝑆 𝐵|

|𝑆 𝑊|
=

|𝑊𝑇𝑆𝐵𝑊|

|𝑊𝑇𝑆𝑊𝑊|
 

 We seek the projection matrix 𝑊 that maximizes 

this ratio 
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LDA, several classes 

 It can be shown that the optimal projection matrix 

𝑊 is the one whose columns are the 

eigenvectors corresponding to the largest 

eigenvalues of the following generalized 

eigenvalue problem. 

𝑊∗ =  𝑤1
∗𝑤2

∗ … 𝑤𝐶−1
∗ = argmax

𝑊

|𝑊𝑇𝑆𝐵𝑊|

|𝑊𝑇𝑆𝑊𝑊|
= (𝑆𝐵 − 𝜆𝑖𝑆𝑊)𝑤𝑖

∗ 

 𝑆𝐵 is the sum of 𝐶 matrices of rank one or less 

and the mean vectors are constrained by 

𝜇 =
1

𝐶
 𝜇𝑖

𝐶
𝑖=1  

 Therefore, 𝑆𝐵 will be of rank ≤ 𝐶 − 1 ⇒ only 

(C−1) of the eigenvalues 𝜆𝑖 will be non-zero 

 The projections with maximum class separability 

information are the eigenvectors corresponding 

to the largest eigenvalues of 𝑆𝑊
−1𝑆𝐵 
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Coffee discrimination using a gas sensor array  

 LDA on an odor recognition problem 

 Five types of beans were presented to 

an array of chemical gas sensors 

 For each coffee type, 45 “sniffs” were 

performed and the response of the gas 

sensor array was processed in order to 

obtain a 60-dimensional feature vector 

 

98 



Coffee discrimination using a gas sensor array  

 From the 3D scatter plots it is 

clear that LDA outperforms PCA 

in terms of class discrimination 

 This is one example where the 

discriminatory information is not 

aligned with the direction of 

maximum variance 

 Typically, this is the case for most 

well-behaved classification 

problems 
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Problems/limitations of LDA 

 LDA produces at most 𝐶 − 1 feature projections 

 If the classification error estimates establish that more features are 

needed, some other method must be employed to provide those 

additional features 

 LDA is a parametric method since it assumes unimodal Gaussian 

likelihoods 

 If the distributions(/clusters) are significantly non-Gaussian, the LDA 

projections will not be able to preserve any complex structure of the data, 

which may be needed for classification. 

 LDA will fail when the discriminatory information is not in the mean but 

rather in the variance of the data. 
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What to remember from this lecture 

 Distance measures, feature selection algorithms 

 Understand basic search strategies 

 Training data is a sparse resource, and should be used 

efficiently 

 Crossvalidation is usually a good approach for using data to 

decide parameters of classifiers 

 PCA and LDA used for preprocessing of the data  
 before classification to beat the «curse of dimensionality» 

 to learn something about class distribution when data is very high 

dimensional 


