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Readings for this lecture 

 Morphology 

 R.C. Gonzales and R.E. Woods: Digital Image Processing, 3rd ed, 

2008. Prentice Hall. ISBN: 978-0-13-168728-8. Chapter 9, 9.4,9.5 

very cursory 

 Graph cuts and other regularization approaches 

 Exercise/tutorial text 

 Cursory reading for interested students 

 http://www.cs.cornell.edu/~rdz/graphcuts.html 

 Classic paper: What Energy Functions can be Minimized via 

Graph Cuts? (Kolmogorov and Zabih, ECCV '02/PAMI '04) 
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What is regularization? 

 «Cleaning things up» / smoothing 

 Classification results (category output or probabilities) 

 Models (for example linear regressions or decision boundaries) 

 Detections (edge detectors, etc.)  

 Even raw images! 

 How do we regularize 

 Smoothing results in 2D, by comparing with neighborhood 

 Penalties on «non-regular» behavior on results 

 Smoothing parameters, images or inputs 
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What will this lecture cover? 

 General terminology on regularization 

 The regularization inherent in Support Vector Machines 

 Morphology 

 Graph cuts 
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Summary: what is regularization? 

 Regularization is smoothing of parameters or output of a classification 

method 

 Rationale is because we believe smooth descriptions to be less noisy 

 Regularization is essentially the same across different PR approaches  

 Example: Regularization penalizes bending energy 

 What is the best way to show graph points with a smooth line? Heavy regularization is a 

poor fit, light regularization causes local distortion 

 •Regularizatio

n works by 

restrictions on 

possible 

solutions or by 

using simpler 

estimates 

explicitly or 

indirectly. 

 

Medium Regularization Heavy Regularization Light Regularization 



Why regularize? 

Measurements are noisy, so we don‟t want to learn the training 

data perfectly, because then we learn the noise as well.  

 

Avoid overfitting!  

 

Choose the simplest possible model, but not too simple.  



What is regularization? 

Modification of our estimation procedure for f(X)  

 Goal: get reasonable answers in unstable situations 

 Approach: use simpler models or restrict models 

 

 

 

What leads to an “unstable situation”? 

 High dimension of X     (# measurements for each example) 

 Few examples in T   (size of training data set) 

 Measurements in X very similar  (high correlation / collinearity) 

 Choice of f(X)   (high flexibility in model) 

 

“..regularization methods, express our prior belief that the type of functions we 

seek exhibit a certain type of smooth behavior…”  

– Hastie & al : The Elements of Statistical Learning 

“A class of methods of avoiding over-fitting to the training set by penalizing the 

fit by a measure of „smoothness‟ of the fitted function.” 

- B. D. Ripley, Pattern Recognition and Neural Networks 



Trading flexibility for stability 

•Analog to bias – 

variance tradeoff in 

regression 

 

• Simple models vary 

less over repeated 

experiments 

 

• But simple models may 

have poorer fit 



Examples of regularization in a 

classification context 

Statistical models for classes 

 Parametric models 

 Regularization : Stabilization of model 

parameters 

 High dimensional data 

 Hyperspectral images 

 Spectrometer data 

 Biostatistics / Microarrays 

 Text classification  

 Nonparametric models (density estimate) 

 Regularization : Smoothness in density 

estimate 

 

 

# word combinations 

>>  

# example documents 



Examples of regularization in a 

classification context 

Decision boundary estimation 

 Support vector machines 
 Mapping of data into higher dimensional 

space 

 Regularization : Reduction in degrees 
of freedom of solution 

 Neural networks 
 Complex interaction in network of 

neurons 

 Regularization : Reduction or removal 
of neurons  

 Tree classifiers 
 Complex decision trees 

 Regularization : Reduction in the 
number of branches 

 



Examples of regularization in a 

classification context 

Regularization as prior belief 

 Prior on class model parameters 
 We believe parameters have some known 

structure 

 Regularization : Assume some initial 
structure (distribution) on classifier 
parameters.  

 Implicit in some regularization 
procedures  

 Spatial classification 
 Classification labels noisy in a spatial 

sense 

 Regularization : Smoothing classification 
labels to obtain contigouous regions 

 Prior belief that neighbor pixels same 
class 

 Medical imaging, tissue classification 

 Remote sensing, mapping 
applications 

 Video image segmentation 
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Statistical model for classes 
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Statistical model for the distribution of each 

class 

 

Rule for finding the statistical model for 

classes (Bayes‟ rule) 

 

 

Classification is done by maximizing p(k|X) 

 

by finding the largest discriminant function 
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Covariance matrix stabilization 
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The covariance matrix can be eigendecomposed: 

The discriminant function is mainly influenced by 

the eigenvectors in directions of small 

eigenvalues, which can be noisy. 

Correlation increases => the ratio between  

the smallest and the largest eigenvaue increases 
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A short example of the variability in the 

discriminant function 

 
 Do 5 random draws from the data from 

both classes. How do the eigenvectors 

look?  

 The eigenvectors corresponding to the 

smallest eigenvalue give very rough 

vectors and realizations are not similar  

Smallest eigenvector in oak group Smallest eigenvector in beech group Largest eigenvector in both groups 



Covariance matrix stabilization 

• Truncate or adjust eigenvalues in the distance 

measure 

•Spectrometry approaches such as SIMCA, DASCO 

and ZVD 

•Add a diagonal matrix (“ridge regression”) 

•Flexible discriminant analysis (Legg til en omega, 

fex den andrederiverte) 

• Use simpler estimates or a combination of simpler 

estimates 

•LDA (!) 

•RDA /LOOC and variants, eigendecomp 

•Naïve bayes, STIC-like 

 

Modification of eigenvalues aii  
• Replace the smallest eigenvalues with their average  

(Discriminant Analysis with Shrunken Covariance)   

• Add a small diagonal matrix to the covariance estimate  
(Ridge penalty) 

 

Shrinking Σk towards some simpler matrix 
• Shrinking towards the common covariance matrix  Σ 

• Shrinking towards the identity matrix  I  
(Regularized Discriminant Analysis) 

• Discrete steps towards common covariance matrix  Σ  

(Eigendecomposition Discriminant Analysis) 
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Modification of eigenvalues aii  

 

Keep the q largest eigenvalues and average the smallest (DASCO) 

 

 

 

 

 

Motivation: 

• directions with small eigenvalues useful for classification 

• average (smooth) away the negative effect of the smallest directions   

 

Add a small value to each of the eigenvalues (Ridge penalty) 

 

 

 

 

Motivation: 

• gradually equalize the amount of impact of the small and large eigenvalues 
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Covariance shrinkage 
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• Covariance matrix estimates with less parameters are more stable 

• Use all samples from all classes to estimate covariance 

 

• Simpler estimates are less flexible 

• A common estimate gives linear decision rules 

 

 

• A linear combination gives a regularized estimate of flexible model  

Shrink towards diagonal matrix  

Shrink towards common covariance 



Regularized discriminant analysis  
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Estimating the boundary directly  
Support Vector Machines (SVM) 

• Optimization problem 
 

 

 

 

 

• Maximize margin 

• Minimize error 

  

• Error 0 for points outside margin 

• Error εfor points inside margin  

 
• C = cost of misclassification 

• Last term regularizer 
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Non-linear SVM 
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• Map data onto another basis of 

higher dimension and find linear 

solution 

• More flexible classifier, 

regularization necessary! 

•Regularization term ||β||2 shrinks 

coefficients of Φ(X) in the original 

space 

•This usually leads to more 

”smooth” boundaries in original 

space 

 



SVM regularization 

Example: expanded basis Φ(X)  with much higher degree of freedom 

• High C (regularization low) 

• no misclassification on 

training data 

• non-smooth boundary 

• test error high 

• Low C (high regularization) 

• some misclassification on 

training data 

• smooth desicion boundary 

• test error low 



Smooth labels 

• Classification as segmentation of an image 

• contiguous regions  

• Bayes rule for entire image 

 

  

• Regularize classification output by prior 

belief P(K) that class of a pixel is likely to be 

similar to the classes of neighbors  

 

 

•Thus, the Bayes rule is on the form 
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Smooth labels 

β=0 β=0.5 β=4 β=1 



Morphology 

 Structuring element (SE) 

 Small set to probe the image under study. 

 For each SE, define an origin, usually centre 

 Shape and size must be adapted to geometric properties 

for the objects. 
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Five basic morphological transforms 
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Basic idea 

 In parallel for each pixel in binary image: 

 Check if SE is satisfied. 

 Output pixel is set to 0 or 1 depending on used operation. 

30 
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Dilation 
 Dilation fills in holes, 

thickens thin parts, grows 

object 

B 
A 



Quick Example 

Image after segmentation Image after segmentation and 

morphological processing 



Structuring Elements, Hits & Fits 

B 

A 
C 

Structuring Element 

Fit: All on pixels in the 

structuring element cover 

on pixels in the image 

Hit: Any on pixel in the 

structuring element covers 

an on pixel in the image 

All morphological processing operations are based 

on these simple ideas 



Structuring Elements 

Structuring elements can be any size and make any shape 

However, for simplicity we will use rectangular structuring 

elements with their origin at the middle pixel 

1 1 1 

1 1 1 

1 1 1 

0 0 1 0 0 

0 1 1 1 0 

1 1 1 1 1 

0 1 1 1 0 

0 0 1 0 0 

0 1 0 

1 1 1 

0 1 0 



Fitting & Hitting 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 1 0 0 0 0 0 0 0 

0 0 1 1 1 1 1 0 0 0 0 0 

0 1 1 1 1 1 1 1 0 0 0 0 

0 1 1 1 1 1 1 1 0 0 0 0 

0 0 1 1 1 1 1 1 0 0 0 0 

0 0 1 1 1 1 1 1 1 0 0 0 

0 0 1 1 1 1 1 1 1 1 1 0 

0 0 0 0 0 1 1 1 1 1 1 0 

0 0 0 0 0 0 0 0 0 0 0 0 

B C 

A 

1 1 1 

1 1 1 

1 1 1 

Structuring 

Element 1 

0 1 0 

1 1 1 

0 1 0 

Structuring 

Element 2 



Fundamental Operations 

Fundamentally morphological image processing is very like 

spatial filtering 

The structuring element is moved across every pixel in the 

original image to give a pixel in a new processed image 

The value of this new pixel depends on the operation 

performed 

There are two basic morphological operations: erosion and 

dilation 



Erosion 

Erosion of image f by structuring element s is given by f  s 

The structuring element s is positioned with its origin at (x, y) 

and the new pixel value is determined using the rule: 
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Erosion Example 

Structuring Element 

Original Image Processed Image With Eroded Pixels 



Erosion Example 

Structuring Element 

Original Image Processed Image 



Erosion Example 1 

Original image Erosion by 3*3 

square structuring 

element 

Erosion by 5*5 

square structuring 

element 

 



Erosion Example 2 

Original 

image 

After erosion 

with a disc of 

radius 10 

After erosion 

with a disc of 

radius 20 

After erosion 

with a disc of 

radius 5 



Dilation 

Dilation of image f by structuring element s is given by f     s 

The structuring element s is positioned with its origin at (x, y) 

and the new pixel value is determined using the rule: 
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Dilation Example 

Structuring Element 

Original Image Processed Image 



Dilation Example 

Structuring Element 

Original Image Processed Image With Dilated Pixels 



Dilation Example 1 

Original image Dilation by 3*3 

square structuring 

element 

Dilation by 5*5 

square structuring 

element 



Dilation Example 2 

Structuring element 

Original image After dilation 



Compound Operations  

More interesting morphological operations can be performed 

by performing combinations of erosions and dilations 

The most widely used of these compound operations are: 

 Opening 

 Closing 



Opening 

 Intuitive description 

 Let B be a disk 

 The boundary of the opening is the points in B that reach the farthest into 

A as B is rolled around inside of A 

 

 



Opening 

The opening of image f by structuring element s, denoted f ○ 

s is simply an erosion followed by a dilation 

  f ○ s = (f s)    s 

 

 



Original shape After erosion After dilation 

(opening) 

Note a disc shaped structuring element is used 



Opening Example 

Structuring Element 

Original Image Processed Image 



Opening Example 

Structuring Element 

Original Image Processed Image 



Closings 

 Closing – a dilation followed by an erosion 

 Use the same structuring element B for both 

 

 

 

 Take the union of all the translates of B that do not intersect A; the 

closing is the complement of that 

 

 

 

 

  BBABA 

The closing of the dark-blue 

shape (union of two squares) 

by a disk, resulting in the 

union of the dark-blue shape 

and the light-blue areas.  

http://en.wikipedia.

org/wiki/Mathemat

ical_morphology 

http://upload.wikimedia.org/wikipedia/en/2/2e/Closing.png


Closings 

 Intuitive description 

 Let B be a disk 

 We roll B around the outside of A 

 The boundary of the closing is the points of B that just 

touch A 

 

 

 



Closing 

The closing of image f by structuring element s, denoted f • s 

is simply a dilation followed by an erosion 

  f • s = (f    s)s 

 

 



Original shape After dilation After erosion 

(closing) 

Note a disc shaped structuring element is used 



Closing Example 

Structuring Element 

Original Image Processed Image 



Closing Example 

Structuring Element 

Original Image Processed Image 



Morphological Processing Example 



Grayscale Morphology: image 

Grayscale image and 3D solid representation 

image landscape 



Grayscale Dilation 

dilation dilation over original 

 Grayscale Dilation:  A grayscale image F dilated by a 
grayscale SE K is defined as: 

 

 It generally brightens the source image.  
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Grayscale Dilation 

Source image Dilated image 



Grayscale Erosion 

erosion erosion under original 

Grayscale Erosion:  A grayscale image F eroded 
by a grayscale SE K is defined as: 

   

 It generally darken the image. 
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Grayscale Erosion 

Source image Eroded image 



 Similar to binary case 

 Opening is erosion followed 

by dilation 

 Closing is dilation followed by 

erosion 

 

 Geometric interpretation of 

opening 

 Push the SE up from below 

against the underside of f 

 Take the highest values 

achieved at every point 

 

Opening and Closing 

Opening 

removes small, 

bright details 

bbfbf  )(

bbfbf  )(



Opening and Closing 

 Geometric interpretation of closing 

 Push the SE down from above against the topside of f 

 Take the lowest values achieved at every point 

 

Closing 

removes 

small, dark 

details 



Grayscale Opening 

opening opened & original 

 Grayscale Opening: A grayscale image F opened by a 
grayscale SE K is defined as: 

     

 It can be used to select and preserve particular intensity 
patterns while attenuating others 

KKFKFKFO gggG  )(),( 



Grayscale Opening 

Source image Opened image 



Grayscale Closing 

closing closing & original 

 Grayscale Closing: A grayscale image F closed by a 
grayscale SE K is defined as: 

     

 It is another way to select and preserve particular intensity 
patterns while attenuating others. 

KKFKFKFO gggG  )(),(



Grayscale Closing 

Source image Closed image 



Morphological Edge Detection 

 Morphological Edge Detection is based on Binary 
Dilation, Binary Erosion and Image Subtraction.  

 Morphological Edge Detection Algorithms: 

 Standard: 

 External:  

 Internal: 

)()()( KFKFFEdgeS 

FKFFEdgeE  )()(

)()( KFFFEdgeI 



Morphological Edge Detection 

F 

K 

F K 

F ΘK 
EdgeE(F) 

EdgeS(F) 

EdgeI(F) 



Morphological Edge Detection 

F 

EdgeS(F) EdgeE(F) 

EdgeI(F) 



Morphological Gradient 

 Morphological Gradient is calculated by 
grayscale dilation and grayscale erosion 

 

 

 It is quite similar to the standard edge detection 

 We also have external and internal gradient 

 

),(),(
2

1
)( KFEKFDFGradient gg 



Morphological Gradient 

Standard External Internal 



Morphological Smoothing 

Morphological Smoothing is based on the 
observation that a grayscale opening smoothes 
a grayscale image from above the brightness 
surface and the grayscale closing smoothes 
from below. So, the “smoothing sandwich” is:  
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Morphological Smoothing 



Top-hat Transform 

 Top-hat Transform (TT): An efficient segmentation tool for 

extracting bright (respectively dark) objects from uneven 

background. 

 White Top-hat Transform (WTT): 

 

 

 Black Top-hat Transform (BTT): 

 

       

KFFWTT g

FKFBTT g 



Top-hat Transform 

tophat + opened = original tophat: original - opening 



Top-hat Transform 

BTT WTT 



Top-hat Transform 

BTT 

WTT 



Smoothing binary boundaries 

 Original border (image 1) 

 Distance Transform (images 2,4,6) and thresholding 

instead of 

 dilation with square SE of size 7x7 (  image 3) 

 erosion with square SE of size 13x13 (  image 5) 

 dilation with square SE of size 7x7 (  image 7) 
90 



Energy Minimization Problems 

 In general terms, given some problem, we: 
 Formulate the known constraints 

 Build an “energy function” (aka “cost function”) 

 Look for a solution that minimizes it 

 If we have no further knowledge: 
 The problem can be NP-Hard (requires exponential solution 

time) 

 Use slow, generic approximation algorithms for 
optimization problems (such as simulated annealing) 



EM in Computer Vision 

 Consider a broad class of problems called Pixel Labeling 

 Given some images we want to “say something about the pixels” 

 For each pixel p, give it a label fp from a finite set of labels L, 

such that we minimize some energy function. 

 

 Many applications 

 Image Segmentation  

 Image Restoration 

 Stereo and Motion 

 Medical Imaging 

 Multicamera Scene Reconstruction 



Example binary segmentation 

 Suppose we want to segment an image into foreground 

and background 

 

 

 

 

 



Example binary segmentation 

• Suppose we want to segment an image into 
foreground and background 

User sketches out a few strokes 
on foreground and background… 

 
How do we classify the rest of 

the pixels? 



Binary segmentation as energy 

minimization 

 Define a labeling L as an assignment of each 

pixel with a 0-1 label (background or foreground) 

 

 Problem statement: find the labeling L that 

minimizes 

 
{ { 

match cost smoothness cost 

(“how similar is each labeled 
pixel to the foreground / 

background?”) 



EM in Computer Vision 

 Consider a specific family of Energy Functions 
 Powerful enough to formulate many useful problems 

 Can be reduced to solving a graph min-cut problem 

 

 Problems defined with these functions: 
 Can be solved quickly (using max-flow algorithms) 

 In many cases – optimal solution or within a known 
factor of the optimum 



     



Nqp

qpqp

p

pp ffVfDfE
,

, ,

 Input: set of pixels P, set of labels L,               is a 

neighbourhood system on pixels. 

 Goal: find a labeling                that minimizes        . 

 .          is a function derived from the observed data that 

measures the cost of assigning label      to pixel p. 

 .                measures the cost of assigning the labels          

to adjacent pixels p, q. Used to impose spatial smoothness. 

Energy Function Definition 

PPN 

LPf :  fE

 
pp fD

 
qpqp ffV ,, qp ff ,

pf

 

 

Esmooth(f) 

 

 

Edata(f) 



 The Edata(f) component: 

 Look at each pixel independently 

 Given it‟s current value, what would it cost to label it with 

each of the labels? 

 Examples: 

 Cost based on a-priori known pixel intensity or color distribution 

                     is the observed intensity of pixel p 

What if we used only this component in E(f)? 

 Label each pixel independently with the most likely 

(cheap) label 

Energy Function - Edata Component 

 
ppp iif ,

2

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 What would be the problem? 

 For example (object segmentation): 

 

 

 

 
     

 

   Typical k-means classifier outputs 

 We need to add a “smoothness” cost 

Optimizing Edata Only – Illustration 





Energy Function - Esmooth Component 

 Look at all pairs of neighbor pixels 

 Penalize adjacent pixels with different labels 

What smoothness cost function to use? 

 

 

 
 

   

 

    Noised diamond image 
Fast Approximate Energy Minimization via Graph Cuts 

Yuri Boykov, Olga Veksler, Ramin Zabih  

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf
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 Potts Interaction Penalty: 
   

 T – indicator function, K – constant 

 The solution will be piecewise constant, with 

discontinuities at the boundaries 

Smoothness Cost Functions 

   



Nqp

qpsmooth ffTKfE
,

Fast Approximate Energy Minimization via Graph Cuts 

Yuri Boykov, Olga Veksler, Ramin Zabih  

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf


 L2 distance: 
   

 What is the problem? 

 High penalties at object boundaries 

 We want smooth objects, but allow different labels at 

object boundary – a discontinuity-preserving function. 

Smoothness Cost Functions 

  



Nqp

qpsmooth fffE
,



 Truncated L2 distance: 
   

 K – constant 

 The solution will be piecewise smooth, with 

discontinuities at the boundaries 

Smoothness Cost Functions 

Fast Approximate Energy Minimization via Graph Cuts 

Yuri Boykov, Olga Veksler, Ramin Zabih  

   



Nqp

qpsmooth ffKfE
,

,min

http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf


 Normalize for neighbor distance, image contrast: 
   

 

 

 

 This function penalizes a lot for discontinuities between 

pixels of similar intensities when |Ip − Iq| < .  

 However, if pixels are very different, |Ip − Iq| > , then 

the penalty is small. 

Smoothness Cost Functions 
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 Neighboring pixels should generally have the same labels 

 Unless the pixels have very different intensities 

: similarity in intensity of p and q 

=  10.0 
=  0.1 (can use the same trick for stereo) 



Binary segmentation as energy 

minimization 

 

 

 

 For this problem, we can easily find the global minimum! 

 

 Use max flow / min cut algorithm 



Markov Random Fields 





edgesji

ji

i

i datayydataydataEnergy
,
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Node yi: pixel label 

Edge: 

constrained 

pairs 

Cost to assign a 

label to each pixel 
Cost to assign a pair of 

labels to connected 

pixels 



Markov Random Fields 
 Example: “label smoothing” grid 

Unary potential 

    0    1 

0  0    K  

1  K    0 

Pairwise Potential 

0: -logP(yi = 0 ; data) 

1: -logP(yi = 1 ; data)  
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Graph Cut 

 G(V,E) is a finite directed graph and every edge (u,v) has 

a capacity c(u,v) (a non-negative real number).  

 Assume two vertices, the source s and the sink t, have 

been distinguished.  

 A cut is a split of the nodes into two sets S and T, such 

that s is in S and t is in T. 

t 
s 



Solving MRFs with graph cuts 





edgesji

ji

i

i datayydataydataEnergy
,

21 ),;,(),;(),;( y

Source (foreground) 

Sink (background) 

Cost to assign to 

foreground 

Cost to split nodes 

Cost to assign to background 



Solving MRFs with graph cuts 
Source (Label 0) 

Sink (Label 1) 

The partitions S and T formed 

by the min cut give the optimal 

foreground and background 

segmentation 

I.e., the resulting labels 

minimize 



Min-Cut 

 

 The capacity of a cut (S,T ) is defined as 

 

 

 

 Min-Cut – finding the cut with the minimal capacity 

 

   
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Max Flow 

 Find the maximum flow from s to t 



GrabCut 

"Interactive Foreground Extraction using Iterated Graph Cuts" 

Carsten Rother, Vladimir Kolmogorov, Andrew Blake, 2004 

Microsoft Research Cambridge, UK 



GrabCut 
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GrabCut 



Graph cuts segmentation 
1. Define graph  

– usually 4-connected or 8-connected 

2. Define unary potentials 

– Color histogram or mixture of Gaussians for background and 

foreground 

 

3. Define pairwise potentials 

 

4. Apply graph cuts 

5. Return to 2, using current labels to compute 

foreground, background models 
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  Colour Model 

Gaussian Mixture Model (typically 5-8 components) 

Foreground & 

Background 

Background 

Foreground 

Background G 

R 

G 

R 
Iterate

d 

graph 

cut 



Multi-Label Case 



Multi-Label Case 

Solve multiple-labels 

problems with binary 

decisions 

 

I.e., try to relabel (expand) 

one label against the rest, 

and compare total energy 

 

Solution is an 

approximation 



Interactive Segmentations 

Images: Boykov 


