
INF 4300 - Exercise for Thursday 26.09.2013

Exercise 1. Problem 10.2 in Gonzales&Woods

Exercise 2. Problem 10.38 in Gonzales&Woods

Exercise 3. Problem 10.39 in Gonzales&Woods

Exercise 4. Problem 10.43 in Gonzalez&Woods

Exercise 5. Matlab exercise with Watershed segmentation.

1. Make a binary image containing two overlapping circular objects.

center1 = -10;
center2 = -center1;
dist = sqrt(2*(2*center1)^2);
radius = dist/2 * 1.4;
lims = [floor(center1-1.2*radius) ceil(center2+1.2*radius)];
[x,y] = meshgrid(lims(1):lims(2));
bw1 = sqrt((x-center1).^2 + (y-center1).^2) <= radius;
bw2 = sqrt((x-center2).^2 + (y-center2).^2) <= radius;
bw = bw1 | bw2;
figure, imshow(bw,'InitialMagnification','fit'), title('bw')

2. Compute the distance transform of the complement of the binary image.
D = bwdist(~bw);
figure, imshow(D,[],'InitialMagnification','fit')
title('Distance transform of ~bw')

3. Complement the distance transform, and force pixels that don't
belong to the objects to be at -Inf.

D = -D;
D(~bw) = -Inf;

4. Compute the watershed transform, and display the resulting label
matrix as an RGB image.

L = watershed(D);
rgb = label2rgb(L,'jet',[.5 .5 .5]);
figure, imshow(rgb,'InitialMagnification','fit')
title('Watershed transform of D')

Exercise 6. Segmentation of pears using morphology and watershed

Step 1: Read in the Color Image and Convert it to Grayscale

rgb = imread('pears.png');
I = rgb2gray(rgb);
imshow(I)
text(732,501,'Image courtesy of
Corel',...
'FontSize',7,'HorizontalAlignment','right')

Step 2: Use the Gradient Magnitude as the Segmentation Function

Use the Sobel edge masks, imfilter, and some simple arithmetic to compute the gradient
magnitude. The gradient is high at the borders of the objects and low (mostly) inside the objects.

hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');
Ix = imfilter(double(I), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);
figure, imshow(gradmag,[]), title('Gradient magnitude (gradmag)')

Can you segment the image by using the watershed transform directly on the gradient magnitude?

L = watershed(gradmag);
Lrgb = label2rgb(L);
figure, imshow(Lrgb), title('Watershed transform of gradient magnitude')

Step 3: Mark the Foreground Objects

A variety of procedures could be applied here to find the foreground markers, which must be
connected blobs of pixels inside each of the foreground objects. In this example you'll use
morphological techniques called "opening-by-reconstruction" and "closing-by-reconstruction" to
"clean" up the image. These operations will create flat maxima inside each object that can be
located using imregionalmax.

Opening is an erosion followed by a dilation, while opening-by-reconstruction is an erosion followed
by a morphological reconstruction. Let's compare the two. First, compute the opening using
imopen.

se = strel('disk', 20);
Io = imopen(I, se);
figure, imshow(Io), title('Opening (Io)')

Next compute the opening-by-reconstruction using imerode and imreconstruct.
(You will learn morphological reconstruction in the lecture 24.9)

Ie = imerode(I, se);
Iobr = imreconstruct(Ie, I);
figure, imshow(Iobr), title('Opening-by-reconstruction (Iobr)')

Following the opening with a closing can remove the dark spots and stem marks. Compare a regular
morphological closing with a closing-by-reconstruction. First try imclose:

Ioc = imclose(Io, se);
figure, imshow(Ioc), title('Opening-closing (Ioc)')

Now use imdilate followed by imreconstruct.
Notice you must complement the image inputs andoutput of imreconstruct.

Iobrd = imdilate(Iobr, se);
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);
figure, imshow(Iobrcbr), title('Opening-closing by reconstruction
(Iobrcbr)')

As you can see by comparing Iobrcbr with Ioc, reconstruction-based opening and closing are
more effective than standard opening and closing at removing small blemishes without affecting the
overall shapes of the objects. Calculate the regional maxima of Iobrcbr to obtain good
foreground markers.

fgm = imregionalmax(Iobrcbr);
figure, imshow(fgm), title('Regional maxima of opening-closing by
reconstruc
tion (fgm)')

To help interpret the result, superimpose the foreground marker image on the original image.

I2 = I;
I2(fgm) = 255;
figure, imshow(I2), title('Regional maxima superimposed on original image
(I2)')

Notice that some of the mostly-occluded and shadowed objects are not marked, which means that
these objects will not be segmented properly in the end result. Also, the foreground markers in
some objects go right up to the objects' edge. That means you should clean the edges of the
marker blobs and then shrink them a bit. You can do this by a closing followed by an erosion.

se2 = strel(ones(5,5));
fgm2 = imclose(fgm, se2);
fgm3 = imerode(fgm2, se2);

This procedure tends to leave some stray isolated pixels that must be removed.
You can do this using bwareaopen, which removes all blobs that have fewer than a certain number
of pixels.

fgm4 = bwareaopen(fgm3, 20);
I3 = I;
I3(fgm4) = 255;
figure, imshow(I3)
title('Modified regional maxima superimposed on original image (fmg4)’)

Step 4: Compute background markers
Now you need to mark the background. In the cleaned-up image, Iobrcbr, the dark pixels belong
to the background, so you could start with a thresholding operation.

bw = im2bw(Iobrcbr, graythresh(Iobrcbr));
figure, imshow(bw), title('Thresholded opening-closing by reconstruction
(bw)’)

The background pixels are in black, but ideally we don’t want the background markers to be too
close to the edges of the objects we are trying to segment. We will “thin” the background by
computing the “skeleton by influence zones”, of SKIZ, of the foreground of bw. This can be done by
computing the watershed transform of the distance transform of bw, and then looking for the
watershed ridge lines (DL==0) of the result.

D = bwdist(bw);
DL = watershed(D);
bgm = DL == 0;
figure, imshow(bgm), title(‘Watershed ridge lines (bgm)’)

Step 5: Compute the Watershed Transform of the Segmentation Function
The function imimposemin can be used to modify an image so that it has regional minima only in
certain desired locations. Here you can use imimposemin to modify the gradient magniture image
so that its only regional minima occur at foreground and background marker pixels.

gradmag2 = imimposemin(gradmag, bgm | fgm4);

Finally we are ready to compute the watershed-based segmentation.

L = watershed(gradmag2);

Step 6: Visualize the result

One visualization technique is to superimpose the foreground markers, background markers, and
segmented object boundaries on the original image. You can use dilation as neede to make certain
aspects, such as the object boundaries, more visible. Object boundaries are located where L==0.

I4 = I;
I4(imdilate(L==0, ones(3,3)) | bgm | fgm4) = 255;
figure, imshow(I4)
title('Markers and object boundaries superimposed on original image (I4)’)

The visualization illustrates how the locations of the foreground and background markers affect the
result. In a couple of locations, partially occluded darker objects were merged with their brighter
neighbor objects because the occluded objects did not have foreground markers.
Another useful visualization technique is to display the label matrix as a color image. Label
matrices, such as those produced by watershed and bwlabel, can be converted to truecolor
images for visualization purposes using label2rgb.

Lrgb = label2rgb (L, ‘jet’, ‘w’,’shuffle’);
figure, imshow(Lrgb)
title(‘Colored watershed label matrix (Lrgb)’)

You can use transparency to superimpose this pseudo-color label matrix on top of the original
intensity image.

Figure, imshow(I), hold on
himage = imshow(Lrgb);
set(himage, 'AlphaData', 0.3);
title('Lrgb superimposed transparently on original image’)

Exercise 7. Detecting cells using Watershed – doing it by yourself

Separating touching objects in an image is one of the more difficult image processing
operations. The watershed transform is often applied to this problem. Find the watershed
ridge lines in the cell image to define each cell region.

Step 1: Read image img_cells.jpg from ~inf3300/bilder
Step 2: Make a binary image were the cells are forground and the rest is background.
Step 3: Fill interior gaps if necessary with: bwareaopen
Step 4: Compute the distance function by: bwdist
Step 5: Compute the watershed borders by using: watershed
Step 6: Look at the final watershed regions overlaid the image

How well do you find the cell regions?

Good luck!

