INF 4300 — Digital Image Analysis
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*Repetition of key material from INF2310
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Practical information - Schedule

Web page

e Lectures
— Fritz Albregtsen and Anne Schistad Solberg
— When: Wednesday 12:15-14:00.
— Where: “Postscript”, OJD 2458 (IF12)

» Exercises
— Sigmund Rolfsjord
— Group 1:
* When: Thursday 12:15-14:00. First time 05.09.2013
e Where: “Limbo” (3418), OJD (IFI2)
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e http://www.uio.no/studier/emner/matnat/ifi/INF4300/

— Information about the course
— Lecture plan

— Lecture notes

— Exercise material

— Course requisite description
— Exam information

— Messages
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Course material

All foils will be made available on the course web site.

The foils define the course requisites.
Exercises will be introduced as we go along.

No books defining all course requisites
— Gonzalez & Woods: Digital Image Processing, 3 ed., 2008.
+ additional material
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Exercises

e The ordinary weekly exercises are NOT obligatory.
— Probably a good idea to do them anyway ©

— The ordinary exercises can be solved in any programming
language, solutions will be provided in Matlab.

e Mandatory exercises

— Two parts (October & November)
— Individual work
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Exam

Written exam ( 4 hours), December 16, 14:30-18:30

No written sources of information available at exam

Follow the web page for updates on exam.
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Term project

e Sadly, plagiarism and cheating on term papers is common,
but the reaction may be severe.

e Therefore you should read the following document:
http://www.mn.uio.no/ifi/studier/admin/obliger/ (in Norwegian)

Please notice the routines on cheating and plagiarism!
http://www.admin.uio.no/admhb/regelhb/studier/andre-regelverk/fuskesakereng.xml

e Using available source code and applications is perfectly
OK and will be credited as long as the origin is cited

e The term project is individual work, and the handed in
result should clearly be your own work
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Lecture plan

August 26 27 |28 29 30 31 01 Introductionand preliminaries Fritz
[SeriEmez 02 03 04 05 06 07 08 Featuresfromimages, Texture Fritz
09 10 |11 12 13 14 15 Localto global: Hough Transform Fritz
16 17 |18 19 20 21 22 Region and edge based segmentation Fritz
23 24 | 25 26 27 28 29 Objectrepresentation Anne
Octoter 30 o102 03 04 05 05
07 08 09 10 11 12 13 Objectdescription Fritz
14 15 [16 17 18 19 20 Classification | Anne
21 22 28 24 25 26 27 Classification Il Anne
28 29 130 31 01 03 Classification Il Anne
NevEmier 04 05 06 07 08 09 10 Mathemathical morphology Anne
11
25 26 |27 28 29 30 01 Coursesummary Fritz/Anne
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What is image analysis ?

science whose ultimate goal is to
give computers “vision”

used in the more limited sense
of simple image manjpulations.

Image analysis is the art and

— Read handwritten documents
— Recognize people

— Find objects

— Measure the world in 3D

— Guide robots

Image processing is often

— Removing noise

— Changing contrast

— Improving edges

— Coding and compression
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From pixels to features to class

Applications of image analysis ...

e Objects often correspond to regions.
We need the spatial relationship

between the pixels. 9502884 1¢

* For text recognition: the information is | {5695~

in the shape, not in the gray levels.

« Classification: learn features that are
common for one type of objects.

*Moment of inertia
*Topology
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& Segmentation Region feature| ~Region features: | o|assification

.j extractior] *Area
o r — — ePerimeter |  =— 3
iy - «Curvature
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Medical applications, e.g., ultrasound, MR, cell images
Industrial inspection

Traffic surveillance

Text recognition, document handling

Coding and compression

Biometry

— identification by face recognition, fingerprint or iris

Earth resource mapping by satellite images

Sea-bed mapping (sonar)

Mapping of oil reservoirs (seismic)
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EXAMPLE: OIL-SPILL DETECTION

Tanker spilling oil

Radar image of oil-spill
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Classification

] ] into tissue
MR images of brain types.
Tumor marked
in red.
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Weed recognition in precision farming

Detect and recognize invasive
weed species in cereal fields

Classify weeds in real time to
enable on-line control of
herbicide spray

Largely unsolved problem,
potential huge savings in weed
control costs (commercial
potentiall)
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Smart video surveillance

e Detect and classify
events in real-time
in surveillance video

e Track objects and alert
if humans enter
Nno-go-zones

e Qutdoor imagery is
challenging, wind,
weather and sun
causes large changes
in scene
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Tracking and classification of objects

B Challenges:

B Objects may be poorly
segmented or occluded,
so shape or appearance models
may be useless

B One blob may contain several

objects
| Solution:

B Analyze motion patterns within
blobs (decide object class)

B Detect heads, arms and other
human parts (decide number of
objects within blob)
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Automatic fish segmentation

Pick single fish from underwater
video of a fish farm
Estimation of fish statistics
— Size (for weight estimates)
— Motion
Challenges:
— lllumination varies
— Seawater murky, food / particles
— No contrast

— Fish overlap
— Fish may swim in any direction
Solution:
— Active contours, initialized with a
fish-shape

— Use information from two cameras
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INF2310 — a brief repetition

e See http://www.uio.no/studier/emner/matnat/ifi/INF2310/v13/undervisningsplan.xml

e Topics covered in the course:

— Image representation, sampling and quantization.
— Compression and coding

— Color imaging

— Grey-level mapping

— _Geometrical operations

Assumed
known

— Filtering and convolution in the image domain
— Fourier transform

— Segmentation by thresholding

— Edge detection

Good understanding needed
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2-D convolution

e The resulting image g(x,y) is given by
g(x.y)= 2, 2 h(j. k) f(x=jy-k)

J=—wy k=-w,

X+HW YW,

= > dh(x-j,y-k)f(jk)

J=xwy k=y-w,

e his a mxnfilter with size m=2w,+1, n=2w,+1

e The result is a weighed sum of the input pixels surrounding
pixel (x,)). The weights are given by A, k).

e The pixel value of the next pixel in the out image is found
by moving the filter one position and computing again.
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Separable filters

Non-uniform low pass filters

e Geometrical shapes: rectanglar and square
e Rectangular mean filters are separable.

h(i, ) = —

=i[1 111 1«
25 25

[ T NN
L
L
L
L

e el

e Advantage: fast filtering
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— 2D Gauss-filter:
2 2
h(x,y) = exp(——(X +2y )j
20

— Parameter o is standard deviation (width)
— Filter size must be set relative to o

F128.08.13 INF 4300 22

Digital gradient operators

« The gradient of f{x)is Limw
—0

B The gradient of an image:
— [of of
Vi =35

B The gradient points in the direction of most rapid intensity change
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Gradient operators
e Prewitt-operator

10 -1 -1 -1 -1
Hx(i,j){l 0 —1]Hy(i,j){o 0 o]

10 -1 1 1 1

e Sobel-operator

10 -1 1 -2 -1
H G, )=|2 0 —2|H,G,)=[0 0 0
10 -1 1 2 1

e Frei-Chen-operator

1 0 -1 -1 -2 41
H. i, i)=[v2 0 -v2|H, G, j)=|0 0 ©
1 0 -1 1 V2 1
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Gradient direction and magnitude

e Horisontal edge component:

— Compute g,(x,y)=H,*f(x,y)

=> Convolve with the horisontal filter kernel H,
« Vertical edge component:

— Compute g,(x,y)=H,*f(x,y)

=> Convolve with the vertical filter kernel H,

The gradient direction is given by:
= —-1(9f 91
6 = tan ( ay / 3:0)

The edge strength is given by the gradient magnitude

1V 71 = /(D + ()
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Edge extraction

e Several basic edge extraction
techniques were taught in INF2310

e In this context edges are both
edges in intensity, color and texture

e Edges are important for many
reasons:

— Much of the information in an image is
contained in the edges. In many cases
semantic objects are delineated by
edges

— We know that biological visual systems
are highly dependent on edges
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Edge extraction

e The standard operator is the so called Sobel operator.

e In order to apply Sobel on an image you convolve the two
x- and y-direction masks with the image:

1 2 1 -1 0 1
0 0 0 2 0 2
1 2 1 -1 0 1
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Edge extraction - Sobel

e This will give you two images, one
representing the horizontal
components of the gradient, one
representing the vertical
component of the gradient.

e Thus using Sobel you can derive
both the local gradient magnitude
and the gradient direction.
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Grayscale image

Horizontal edges
28




Edge extraction - Laplace

< Another frequently used technique for edge detection
is based on the use of discrete approximations to the
second derivative.

e The Laplace operatoris given by

2 2
V() = o+ o

e This operator changes sign where f(x,y) has an inflection
point, it is equal to zero at the exact edge position
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Edge extraction - Laplace

e Approximating second V2(F(x,y)) = azf Lo
derivatives on images as Y
finite differences gives the ~—f(x-1, y)+2f(x, y)- f(x+1-y)
following mask -fy-D+2f(xy)- f(x y+1)
0 1| o I
1 4 1 w0
0 -1 0 N
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Edge extraction - LoG

e Since the Laplace operator is
based on second derivatives
it is extremely sensitive to noise.
am

= To counter this it is often o ’
combined with Gaussian pre- anl__

filtering in order to reduce noise. R )

e This gives rise to the so called
Laplacian-of-Gaussian (LoG)
operator.
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Sinusoids in images

f(x,y)=128+ Acos(zn(ux h VY)
A - amplitude
u - horisontal frequency

v - vertical frequency A=50, u=10, v=0 A=20, u=0, v=10

A=50, u=10, v=10 A=100, u=5, v=10 A=100, u=15, v=5
Note: u and v are the number of cycles (horisontally and vertically) in the image
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2-D Discrete Fourier transform (DFT)

f(x,y) is a pixel in a NxMimage

Definition: L wa |
F(U,V) = W z f (X, y)e—JZIZ'(UX/M+vy/N)

x=0y
el? =cos@+ jsing

=z
=

Il
o

This can also be written:

F(u,v) =LNMfof(x, y)[cos(2z(ux/ M +vy/N)) - jsin(2z(ux/M +vy/N))]

x=0 y=0

Inverse transform:
M-1IN-1

f (X1 y) = zz F(U,V)ejZ”(UX/M"'W/N)

u=0 v=0
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Example — oriented structure
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The convolution theorem

Convolution in the image domain
f(x,y)*h(x,y) < F(u,v)-H(u,v) o
Multiplication in the frequency domain

Multiplication in the image domain
f(x,y)-h(x,y) < F(u,v)*H(u,v) -
Convolution in the frequency domain
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How do we filter out this effect?

F128.08.13 INF 4300
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The "ideal” low pass filter

H{:a. w) ) H(r:. v)

— 1

1=

e v

—I—'- D, v)
DII
abec
FIGURE 4.40 (2} Perspective plot of an ideal lowpass filter transfer function [b) Filter displaved as an image.
(c) Filter radial cross section.
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Example - ideal low pass

Original i
D,=0.2 D,=0.3

Look at these image in high resolution.
You should see ringing effects in the two rightmost images.
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What causes the ringing effect?

Ideal lowpass in the image domain o Note that the filter profile
has negative coefficients

e It has similar profile to a
Mexican-hat filter
(Laplace-of-Gaussian)

e The radius of the circle
and the number of circles
per unit is inversely
proportional to the cutoff
frequency

— Low cutoff gives large
radius in image domain
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fft of H(u,v) 1D profile
for ideal lowpass  for ideal lowpass

Butterworth low pass filter

* Window-functions are used to reduce the ringing effect.
e Butterworth low pass filter of order n:

1
1+[D(u,v)/ D, J"
* D, describes the point where H(u,v) has decreased to half of its maximum

— Low filter order (n7small): H(u,v) decreases slowly: Little ringing
— High filter order (n7large): H(u,v) decreases fast: More ringing

H(u,v)=

e Other filters can also be used,
e.g.: Gaussian, Bartlett, Blackman, Hamming, Hanning
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Gaussian lowpass filter

High pass filtering

H (u,v): esz(u,v)/Zaz

H{u, v) Hiw, v)
t I.||.
~ Dy

B

i
aopec

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (¢) Filter
radial cross sections for various values of Dy
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e Simple ("ldeal”) high pass filter:
Ho( )_{0,D(u,v)<D0,
L 1,D(u,v) > D,.
or
Hy, (U, V)EL-H (U, V)

e Butterworth high pass filter:

1

Hiwe (V)= D,/ D

e Gaussian high pass filter:

2 2
Hipe (4y) =172
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Ideal, Butterworth and Gaussian
highpass

Example — Butterworth highpass

abe
def
Ehi
FIGURE 4.82 Top row: Pernpective plot,
filicr. Middle and bolbom fon Ay
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abce

FIGURE 4.55 Results of highpass tiltering the image in Fig. 4.41(a) using a BHPF of order 2 with [y, = 30, 60,
and 160, corresponding to the circles in Fig. 441{b}). These results are much smoother than those obtained
with an IHPF.
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Bandpass and bandstop filters

e Bandpass filter: Keeps only the energy in a given
frequency band <D,,,,Dygn™> (Or <Dy-W/2,Dy+ W/2>)

e W is the width of the band
* D, is its radial center.

e Bandstop filter: Removes all energy
in a given frequency band <Dy,,,Dyjgn>
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Bandstop/bandreject filters

e ldeal 1 f D(u,v)<Do_W?
Hyo(uv)=10 if DD-W?S D(u,v)sDo+W?
1 if D(u,v)>Do+%
e Butterworth .
Hyss (U, V) =

1+[ D(u,v)W ]‘
D*(u,v)-D¢

e Gaussian l[DZ(UYV)_DgT
HbsG(U,V) —1-e 2| D(uv)W
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An example of bandstop filtering

ab

it

FIGLIRE 5.16
() Image
corrupted by
sinusoidal noise,
(b} Spectrum of (a).
() Butterworth i
bandrejeet filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of

NASA)
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Bandpass filters

e Are defined by
Hy, (U, V)=1-H (u,v)

Original o
Result after bandpass filtering
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Segmentation and thresholding

 Segmentation 314159263
— Function that labels each pixel in input 05092%K -
image with a group label _j(}‘“‘%hj 1€
— Usually “foreground” and “background” 4 ?')5}23{} 78 1
— Each group shares some common B349117ne
properties
« Similar color l
e Similar texture — —
« Surrounded by the same edge 314159265
e Thresholding o N '95028841'5
— One way of segmentation is by defining e i e
a threshold on pixel intensity 459330781
A342117ne
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Segmentation and thresholding

Remember, regions that have semantic importance
do not always have any particular visual distinction.
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Segmentation and thresholding

e The only segmentation method taught in INF2310
was thresholding.

e Thresholding is a transformation of the input image £
to an output (segmented) image g as follows:

L, fGHN=2T

(i,j) =
S 0, JGi,j)<T

e Many variants of the basic definition ...
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Segmentation and thresholding

e This seemingly simple method must be used with care:
— How do you select the threshold, manually or automatically?

— Do you set a threshold that is global or local (on a sliding window
or blockwise)?

— Purely local method, no contextual considerations are taken
e Automatic threshold selection will be covered later

— Otsu’s method

— Ridler-Calvard’s method
e Local thresholding methods will also be covered

— Local applications of Otsu and Ridler-Calvard

— Niblack’s method

F128.08.13 INF 4300 52




Segmentation and thresholding

e Remember that you normally make an error performing a
segmentation using thresholding:

Threshold t
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Segmentation and thresholding

Assume that the histogram is the sum of two distributions
b(z) and f(z), band f are the normalized background and
foreground distributions respectively, and zis the gray
level.

Let Band F be the prior probabilities for the background
and foreground (B+F=1).

In this case the histogram can be written
pP(2)=Bb(z)+F1(z).
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Segmentation and thresholding

e The total thresholding error will be:

E(t) = F/ f(2)dz + B’/ b(2)dz

>0

e Using Leibnitz’s rule for derivation of integrals and by
setting the derivative equal to zero you can find the
optimal value for ¢:

B _
dt

0= F[(T) = By(T)
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Segmentation and thresholding

EQ) _

~2 = 0= FJ(T) = Bu(T)

This is a general solution.
Does not depend on the type of distribution.

In the case of fand b being Gaussian distributions,
it is possible to solve the above equation explicitly.
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Segmentation and thresholding

e In INF2310 we briefly introduced two methods
(Ridler-Calvard and Otsu)

for determining segmentation thresholds automatically.

e Region- and edge-based methods will be covered
in detail in the INF4300 lectures.
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Exercise & next lecture

e Exercise: Practical use of Matlab, see web page.

e Next lecture: Features from images — Texture.
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