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TodayToday

W th hWe go through 
G&W section 11.2 Boundary Descriptors 
G&W section 11.3 Regional Descriptors

Curriculum includes these lecture notes.

We cover the following :We cover the following :
1. Introduction
2. Topological features
3. Projections
4. Geometric features
5. Statistical shape features5. Statistical shape features
6. Moment-based geometric features

Also remember that texture features are regional descriptors!
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What is feature extraction?What is feature extraction?

• Devijver and Kittler  (1982): 
”Extracting from the raw data the information 

hi h i t l t f l ifi tiwhich is most relevant for classification purposes, 
in the sense of minimizing the within-class pattern 
variability while enhancing the between-class y g
variability”.

– Within-class pattern variability: variance between objects 
belonging to the same class.

– Between-class pattern variability: variance between objects 
from different classes.  

A B C D E F G H I J
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Feature extractionFeature extraction

• We will discriminate between different object classes 
based on a set of features.

• The features are chosen given the application• The features are chosen given the application.
• Normally, a large set of different features is investigated.
• Classifier design also involves feature selection 

- selecting the best subset out of a larger feature set.
• Given a training data set of a certain size, 

the dimensionality of the feature vector must be limitedthe dimensionality of the feature vector must be limited.
• Careful selection of an optimal set of features 

is the most important step in image classification!
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Describing the shape of a segmented objectDescribing the shape of a segmented object

Assumptions:Assumptions: 
• We have a segmented, labeled image.

E h bj t th t i t b d ib d h• Each object that is to be described has 
been identified during segmentation.

– Ideally, one region in the segmented image 
should correspond to one object.

– One object should not be fragmented
into several non-connected regions. 

– Some small noise objects will often occurrSome small noise objects will often occurr, 
but these can often be removed later. 
(next lecture on mathematical morphology)
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Example 1: Recognize printed numbersExample 1: Recognize printed numbers

• Goal: get the series of digits• Goal: get the series of digits, 
e.g. 14159265358979323846…… 

St i thSteps in the program:

1. Segment the image to find digit pixels.
2 Fi d l f t ti d t t b k2. Find angle of rotation and rotate back.
3. Create region objects – one object pr. digit or 

connected component.
4. Compute features describing shape of objects
5. Train a classifier on many objects of each digit.
6. Assign a class label to each new object,6. Assign a class label to each new object,

i.e., the class with the highest probability. 
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Example 2: Recognize music symbolsExample 2: Recognize music symbols

• Goal:interpret the notes and symbols to create• Goal:interpret the notes and symbols to create 
a MIDI-file and then play it! 

Steps in the program:

1. Segment the image to find symbol pixels.
2. Find angle of rotation and rotate back.
3 Fi d th t li d th3. Find the note lines and remove them.
4. Create regions objects for connected 

components. 
5 Match each object with a known object class5. Match each object with a known object class  

(whole note, quarter note, rest, bar, etc.)
based on object features.

6. For all notes:6. For all notes: 
find note height given its vertical position.

7. Create a MIDI file from this. 
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From pixels to featuresFrom pixels to features

Input to the classifier is normally a set of• Input to the classifier is normally a set of
features derived from the image data, not 
the image data itself. Segmentationthe image data itself. 

• Why can’t we just use all the gray level
pixels as they are for text recognition?

Segmentation

p y g
– Objects correspond to regions. We need the

spatial relationship between the pixels.
F t t d i d t l t 2 d

Region features:
A

Region feature 
extraction

– For textured regions, we need at least 2. order.
– For text recognition: the information is in the

shape, not in the gray levels. 

-Area
-Perimeter
-Curvature
-Moment of inertiap , g y
-.....
-....
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Typical image analysis tasksTypical image analysis tasks
• Preprocessing/noise filtering• Preprocessing/noise filtering
• Segmentation
• Feature extraction

– Are the original image pixel values sufficient for classification, 
or do we need additional features?

– What kind of features do we use in order to discriminate
between the object classes involved?between the object classes involved?

• Exploratory feature analysis and selection
– Which features separate the object classes best?
– How many features are needed?How many features are needed?

• Classification (three lectures)
– From a set of object examples with known class, 

decide on a method that separates objects of different types.p j yp
– For new objects: assign each object/pixel to the class

with the highest probability

• Validation of classifier accuracy
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Topologic featuresTopologic features
• This is a group of invariant integer features• This is a group of invariant integer features

– Invariant to position, rotation, scaling, warping

• Features based on the object skeleton
– Number of terminations (one line from a point)
– Number of breakpoints or corners (two lines from a point)
– Number of branching points (three lines from a point)– Number of branching points (three lines from a point)
– Number of crossings (> three lines from a point)

• Region features:

Region with two holes

– Number of holes in the object (H)
– Number of components (C)
– Euler number E = C - HEuler number, E = C H 

• Number of connected components – number of holes

– Symmetry

Regions with three 
connected 

components
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1D Projections1D Projections
• For each row in the region, g

count the number of object pixels. 
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Image – binary region pixels
INF 4300

Row histogram
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ProjectionsProjections

• 1D horizontal projection of the region:

h yxfxp ),()(

• 1D vertical projection of the region:
y

 yxfyp )()(

• Can be made scale independent by using a fixed number of bins 
d li i h hi


x

v yxfyp ),()(

and normalizing the histograms.

• Radial projection in reference to centroid -> ”signature”• Radial projection in reference to centroid > signature .
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Use of projection histogramsUse of projection histograms

• Divide the object into different 
regions and compute projection 
histograms for each regionhistograms for each region.
– How can we use this 

to separate 6 and 9?

• Compute features from the 
histograms.

• The histograms can also be 
used as features directly.
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Use of projection histogramsUse of projection histograms
• Check if a page with text is rotated x 10p g
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Geometric features from contoursGeometric features from contours

• Boundary length/perimeter
• Area
• Curvature
• Diameter/major/minor axis/ j /
• Eccentricity
• Bending energyBending energy
• Basis expansion (Fourier – last week)
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Object areaObject area

• Generally, the area is defined as:

I(x y) = 1 if the pixel is within the object and 0 otherwise

 
X Y

dxdyyxIA ),(

I(x,y) = 1 if the pixel is within the object, and 0 otherwise. 

• In digital images:   AyxIA ),(

ΔA = area of one pixel. If ΔA = 1, area is simply measured in pixels.

X Y

• Area changes if we change the scale of the image
– change is not perfectly linear, because of the discretization of the image. 

• Area ≈ invariant to rotation (except small discretization errors).
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Perimeter length from chain codePerimeter length from chain code
– Distance measure differs when using 8- or 4-neighborhoodg g
– Using 4-neighborhood, measured length ≥ actual length.
– In 8-neighborhood, fair approximation from chain code by:

– This overestimates real perimeters systematically.

2OEF nnP 

– Freeman (1970) computed the area and perimeter of the chain by 

2,21 OEF

N
iy

iixF nnPcycA 





   

– where N is the length of the chain, cix and ciy are the x and y
components of the ith chain element ci (cix, ciy = {1, 0, -1} indicate 

2
1

1 OEF
i

iixF





p i ( ix, iy { , , }
the change of the x- and y-coordinates), yi-1 is the y-coordinate of 
the start point of the chain element ci . nE is the number of even 
chain elements and nO the number of odd chain elements
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chain elements and nO the number of odd chain elements. 
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Chain codeChain code

• Vossepoel and Smeulders (1982) improved 
perimeter length estimate by a corner count nC,     p g y C,
defined as the number of occurrences of unequal 
consecutive chain elements:

P 091040619800

• Kulpa (1977) gave the perimeter as

COEVS nnnP 091.0406.1980.0 

p ( ) g p

  OEK nnP 221
8


   OEK 8
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Pattern matching - bit quadsPattern matching bit quads
• Let n{Q} = number of matches between image pixels and pattern Q• Let n{Q} = number of matches between image pixels and pattern Q. 
• Then area and perimeter of 4-connected object 

is given by:
 00    






0

21021 nnPnA

Bit Quads handle 8-connected images: 
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Gray (1971) gave area and the perimeter as 
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• More accurate formulas by Duda :

•                   DDDD QnQnQnQnPQnQnQnQnQnA 21,34721
3224321 
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•                   DDDD QnQnQnQnPQnQnQnQnQnA 2
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A comparison of methodsA comparison of methods
• We have tested the methods on circles, R ={5, ,70}.We have tested the methods on circles, R {5,…,70}.

• Area estimator :
– Duda is slightly better than Gray. g y y

• Perimeter estimator :
– Kulpa is more accurate than Freeman.

• Circularity :
– Kulpa’s perimeter and Gray’s area gave the best result. 

• Errors and variability largest when R is small. 

• Best area and perimeter not computed simultaneously. p p y

• Gray’s area can be computed using discrete Green’s 
theorem, suggesting that the two estimators can be 
computed simultaneously during contour following
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Object area from contourObject area from contour

• The surface integral over S (having contour C) is given by Green’s theorem:

s := 0.0;
+ 1   xdydxdyAn := n + 1;

pkt[n].x := pkt[1].x;
pkt[n].y := pkt[1].y;
for i:=2 step 1 until n do
begin

 
S C

xdydxdyA

begin
dy := pkt[i].y - pkt[i-1].y
s := s + (pkt[i].x + pkt[i-1].x)/2 * dy;

end;
area : if (s > 0) then s else s;area := if (s > 0) then s else -s;

• The region can also be represented by n polygon vertices

1N
where the sign of the sum reflects 
the polygon orientation.

 



 

1

0
112

1ˆ
N

k
kkkk yxyxA
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Compactness and circularityCompactness and circularity

• Compactness (very simple measure)
– γ = P2 /(4πA), where P = Perimeter, A = Area, 
– For a circular disc, γ is minimum and equals 1.
– Compactness attains high value for complex object shapes, 

but also for very elongated simple objects,but also for very elongated simple objects, 
like rectangles and ellipses where a/b ratio is high.

=> Compactness is not correlated with complexity!

• G&W defines
2– Compactness = P2/A

– Circularity ratio = 4πA/P2
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Circularity and irregularityCircularity and irregularity 
• Circularity may be defined by C = 4πA/P2• Circularity may be defined by C = 4πA/P2. 
• C = 1 for a perfect continuous circle; betw. 0 and 1 for other shapes.

• In digital domain C takes its smallest value for a• In digital domain, C takes its smallest value for a
– digital octagon in 8-connectivity perimeter calculation
– digital diamond in 4-connectivity perimeter calculation

• Dispersion may be given as the major chord length to area
• Irregularity can be defined as:

    yyxxD ii
22max 

– where the numerator is the area of the centered enclosing circle.

    
A

yyD ii

• Alternatively, ratio of maximum and minimum centered circles:
   

    






 


22

22max yyxx
I

ii
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  22min yyxx ii

CurvatureCurvature

– In the continous case, curvature is the rate of change of slope.

– In the discrete case, difficult because boundary is locally ragged.

– Use difference between slopes of adjacent boundary segments 
to describe curvature at point of segment intersection.

– Curvature can be calculated from chain code.
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Discrete computation of curvatureDiscrete computation of curvature

• Trace the boundary and insert vertices, 
at a given distance (e.g. 3 pixels apart),
or by polygonization (previous lecture).

• Compute local curvature ci
as the difference between the directions

vi: edge segment i 
d^t-1: unit vectors of edge segments dt-1 and dt

l l t t i t iof two edge segments joining a vertex: ci: local curvature at point i 

1 iii ddc


• Curvature feature: sum all local curvature
measures along the border.

• More complex regions get higher curvature.   
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Contour based featuresContour based features

Di t M j i ( )• Diameter = Major axis (a)
Longest distance of a line segment 

connecting two points on the perimeterco ect g t o po ts o t e pe ete

• Minor axis  (b)
Computed along a direction perpendicular to the major 

i L t l th ibl b t t b d i t iaxis. Largest length possible between two border points in 
the given direction.

• “Eccentricity” of the contour (a/b)
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Bounding box and CH featuresBounding box and CH features 

R l b di b• Regular bounding box
– Width/height of bounding box
– Centre of mass position in boxCentre of mass position in box

• If the object’s orientation is known, 

Regular
(image oriented)

bounding box

a bounding box can also be oriented 
along this direction. 

• Extent = Area/(Area of bounding box)
– But which type of bounding box?

Object-oriented
bounding box

• Solidity = Area/(Area of Convex Hull)
(also termed ”convexity”)
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MomentsMoments

• Borrows ideas from physics and statistics.
• For a given continuous intensity distribution g(x, y) 

we define moments mpq by

• For sampled (and bounded) intensity distributions f(x y)• For sampled (and bounded) intensity distributions f(x, y)

• A moment mpq is said to be of order p + q.
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Moments from binary imagesMoments from binary images
• For binary images, wherey g

f (x, y) = 1  object pixel
f (x, y) = 0  background pixel

• Area

• Center of mass /”tyngdepunkt”
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Grayscale momentsGrayscale moments

• In gray scale images, we may regard f(x,y)
as a discrete 2-D probability distribution over (x,y)

• For probability distributions, we should have

– And if this is not the case we can normalize by 

F06 09.10.2013 INF 4300 30

Central momentsCentral moments
• These are position invariant moments, defined by

• where

• The total mass, and the center of mass coordinates are given byThe total mass, and the center of mass coordinates are given by

• This corresponds to computing ordinary moments 
after having translated the object so that center of mass is in origo.

• Central moments are independent of position, 
but are not scaling or rotation invariant.
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• Q:  What is 00 for a binary object?
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Central moments from mCentral moments from mpq

Moments µ ( ≤ 3) are given by m by:• Moments µpq (p + q ≤ 3) are given by mpq by:
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• where
• D = (p + q + r); d = (s + t + u)
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• and the binomial coefficients are given by
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Moments of inertia or VarianceMoments of inertia or Variance

• The two second order central moments measure the spread of points• The two second order central moments measure the spread of points
around the y- and x-axis through the centre of mass

• From physics: moment of inertia about an axis: p y
how much energy is required to rotate the object about this axis:
– Statisticans like to call this variance. 

• The cross moment of intertia is given by• The cross moment of intertia is given by

– Statisticians call this covariance or correlation.

• Orientation of the object can be derived from these moments.
– This implies that they are not invariant to rotation.
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Moments of an ellipseMoments of an ellipse
• Assume that the ellipse has semimajor and semiminor axes (a b) a>b• Assume that the ellipse has semimajor and semiminor axes (a,b), a>b.

An ellipse where major axis is along x-axis is given by
2222 1)/()/( xa

a
bybyax 

The largest second order central moment (here called I20) is given by

a

dxxaxbdxyxI
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Moments of inertia for simple shapesMoments of inertia for simple shapes

• Rectangular object (2a×2b): 
I20 = 4a3b/3 ,  I02 = 4ab3/3

2b

• Square (a×a): 
I I 4/12

2a

I20 = I02 = a4/12

• Elliptical object, semi-axes (a,b):Elliptical object, semi axes (a,b): 
I20 = a3b/4 ,   I02= ab3/4 a

b

• Circular object, radius R: 
I20 = I02 = R4/4
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Object orientation - IObject orientation I
• Orientation is defined as the angle, relative to the X-axis, 

f i th h th t fof an axis through the centre of mass 
that gives the lowest moment of inertia.

• Orientation θ relative to X-axis found by minimizing:

Y
αβ

where the rotated coordinates are given by

Xθ   
 

,2 fI 

• The second order central moment of the object around the α-axis, 

 cossin,sincos yxyx 

expressed in terms of x, y, and the orientation angle θ of the object is:

     yxfxyI ,sincos 2  

• We take the derivative of this expression with respect to the angle θ 
• Set derivative equal to zero, and find a simple expression for θ :

x y
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Object orientation - IIObject orientation II
• Second order central moment around the α-axis:

• Derivative w.r.t. Θ = 0 =>

     yxfxyI
x y

,sincos 2  
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• So the object orientation is given by:
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Bounding box - againBounding box again
• Image-oriented bounding box:Image oriented bounding box:

– The smallest rectangle around the object, 
having sides parallell to the edges of the image.

– Found by searching for min and max x and y 
within the object (xmin, ymin, xmax, ymax)

• Object-oriented bounding box:• Object oriented bounding box:
– Smalles rectangle around the object, having one side 

parallell to the orientation of the object (). 
– The transformation

is applied to all pixels in the object (or its boundary)
 sincos     ,sincos xyyx 

is applied to all pixels in the object (or its boundary). 
– Then search for min, min, max, max
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The best fitting ellipseThe best fitting ellipse

• Object ellipse is defined as the ellipse whose least and 
greatest moments of inertia equal those of the object.

• Semi-major and semi-minor axes are given by 

 
  2
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• Numerical eccentricity is given by
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• Orientation invariant object features. 
• Gray scale or binary object.
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Radius of gyration KRadius of gyration, K
The radius of a circle where we could concentrate all the• The radius of a circle where we could concentrate all the 
mass of an object without altering the moment of inertia 
about its center of mass.about its center of mass.

00

0220

0000

2
00

ˆˆ











 YXZ III
KKI

• This feature is invariant to rotation. 
• A very useful quantity because it can be determined• A very useful quantity because it can be determined,      

for homogeneous objects, entirely by their geometry. 
• Squared radius of gyration, K2,Squared radius of gyration, K , 

may be tabulated for simple object shapes, 
to help us compute the moments of inertia.
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A table of K2 in 2D imagesA table of K in 2D images

Rectangle:  K2 = b2/3                 K2 = (a2+b2)/3

2a b
b

2a 2b

Disk:          K2 = R2/4               K2 = R2/2
R R

Ellipse:       K2 = b2/4            K2 = (a2+b2)/4
ab ab
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K2 of some solid objectsK of some solid objects

Parallelepiped :     K2 = (a2+b2)/3
2a

2b
2c

Cylinder : K2 = R2/2

L

Cylinder :                  K = R /2

L

R

Cylinder :                   K2 = R2/4 + L2/12
R

Sphere :                   K2 = 2R2 /5
R
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What if we want scale-invariance?What if we want scale invariance?

• Changing the scale of f(x,y) by (,) gives a new image:

  /,/),( yxfyxf 

• The transformed central moments 
qp  11

• If =, scale-invariant central moments are given by the 
li i

pq
qp

pq   11

normalization:

2    ,1
2
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)(




 qpqppq
pq 
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)( 00
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SymmetrySymmetry
• To detect symmetry about center of mass use central moments• To detect symmetry about center of mass, use central moments.
•
• For invariance of scale, use scale-normalised central moments 

(η η η η η η η )– (η11, η20,  η02,  η21,  η12,  η30,  η03). 
• Objects symmetric about either x or y axis will produce η11 = 0. 
• Objects symmetric about y axis will give η12 = 0 and η30 = 0. 

Obj t t i b t i ill i 0 d 0• Objects symmetric about x axis will give η21 = 0 and η03 = 0. 
• X axis symmetry: ηpq = 0 for all p = 0, 2, 4, ... ; q = 1, 3, 5, …

η11 η20 η02 η21 η12 η30 η03

M 0 + + - 0 0 -
C 0 + + 0 + + 0
O 0 + + 0 0 0 0
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Rotation invariant momentsRotation invariant moments
1 Find principal axes of object, rotate and compute moments.1 Find principal axes of object, rotate and compute moments.

This can break down if object has no unique principal axes.

2  The method of absolute moment invariants:
This is a set of normalized central moment combinationsThis is a set of normalized central moment combinations, 
which can be used for scale, position, and rotation invariant 
pattern identification.

• For second order (p+q=2), there are two invariants:(p q )
φ1 =  η20 + η02 φ2 =  (η20 - η02)2 + 4η11

2
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Third order Hu momentsThird order Hu moments
• For third order moments, (p+q=3), the invariants are:, (p q ),

φ3 =  (η30 - 3η12)2 + (3η21 - η03)2 

φ (η + η )2 + (η + η )2φ4 =  (η30 + η12)2 + (η21 + η03)2

φ5 =  (η30 - 3η12)(η30 + η12)[(η30 + η12)2 - 3(η21 +  η03)2]  
+ (3η - η )(η + η )[3(η + η )2 - (η + η )2]+ (3η21 - η03)(η21 + η03)[3(η30 + η12)2 - (η21 +  η03)2]

φ6 =  (η20 - η02)[(η30 + η12)2 - (η21 +  η03)2] + 4η11(η30 + η12)(η21 +  η03)

φ7 = (3η21 - η03)(η30 + η12)[(η30 + η12)2 - 3(η21 + η03)2]
- (η30 - 3η12)(η21 + η03)[3(η30 + η12)2 - (η21 + η03)2]

φ7 is skew invariant, and may help distinguish between mirror images.

• These moments are not independent, and do not comprise a complete set.
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p , p p

Hu’s moments; a bit simplified; p

For second order moments (p+q=2), two invariants are used:
φ1 =  η20 + η02

φ2 =  (η20 - η02)2 + 4η11
2

For third order moments, (p+q=3), we can use
a = (η30 - 3η12), b = (3η21 - η03),a  (η30 3η12),   b  (3η21 η03),   
c = (η30 + η12),   and d = (η21 + η03)

and simplify the five last invariants of the set:
φ3 =  a2 + b2

φ4 =  c2 + d2

φ ac[c2 3d2] + bd[3c2 d2]φ5 =  ac[c2 - 3d2] + bd[3c2 - d2]
φ6 =  (η20 - η02)[c2 - d2] + 4η11cd
φ7 =  bc[c2 - 3d2] - ad[3c2 - d2]
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Hu moments of simple objectsHu moments of simple objects

• In the continuous case, the two first Hu moments of a binary 
rectangular object of size 2a by 2b, are given by 

22


while the remaining five Hu moments are all zero

22

21 12
1,

12
1







 













 

a
b

b
a

a
b

b
a



while the remaining five Hu moments are all zero.

• Similarly, the two first Hu moments of a binary elliptic object with 
semi axes a and b are given bysemi-axes a and b, are given by 
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while the remaining five Hu moments are all zero. 
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Φ1 and φ2 versus a/bΦ1 and φ2 versus a/b
• Only (φ1 φ2) are useful for these simple objects Hu's first moment versus a/b• Only (φ1, φ2) are useful for these simple objects.

• Notice that even in the continuous case it may be 
hard to distinguish between an ellipse and its

10

100

m
om

en
t

hard to distinguish between an ellipse and its 
bounding rectangle using these two moments.

• Relative difference in φ of ellipse and its object

1Hu
's

 fi
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t m ellipse
rectangle

• Relative difference in φ1 of ellipse and its object 
oriented bounding rectangle is constant, 4.5%.

Relati e diffe ence in φ of ellipse and its object

0,1
1 10 100 1000

a/b

Hu's second moment versus a/b• Relative difference in φ2 of ellipse and its object 
oriented bounding rectangle is constant, 8.8%.
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• Relative differences given above are also true 
when comparing an ellipse with a same-area 
rectangle having the same a/b ratio, regardless 
of the size and eccentricity of the ellipse
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of the size and eccentricity of the ellipse. 0,01
1 10 100 1000

a/b

Moments as shape featuresMoments as shape features

• The central moments are seldom used directly 
as shape descriptors.

• Major and minor axis are useful shape descriptors.

• Object orientation is normally not used directly, 
but to estimate rotationbut to estimate rotation.

• The set of 7 Hu moments can be used as shape features• The set of 7 Hu moments can be used as shape features. 
(Start with the first four, 
as the last half are often zero for simple objects).
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Moments that are invariant to 
general affine transforms
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Contrast invariantsContrast invariants
• Abo-Zaid et al. have defined a normalization 

that cancels both scaling and contrast.
• The normalization is given by

 
2

00'

qp

pq














• This normalization also reduces the dynamic range of 

022000
pq 



  



the moment features, so that we may use higher order 
moments without having to resort to logarithmic 
representation. representation. 

• Abo-Zaid’s normalization cancels the effect of changes 
in contrast, but not the effect of changes in intensity: 

bff )()('
• In practice, we often experience a combination:

byxfyxf  ),(),(

byxcfyxf  )()('
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Scatter plotsScatter plots
• A 2D scatter plot is a plot of• A 2D scatter plot is a plot of 

feature values for two different 
features. Each object’s feature 
values are plotted in the

Feature 2: 
major axis

length

values are plotted in the 
position given by the features 
values, and with a class label 
telling its object class. g j

• Matlab: gscatter(feature1, 
feature2, labelvector)

• Classification is done based on• Classification is done based on 
more than two features, but this 
is difficult to visualize. 

• Features with good class
Feature 1: minor axis length

• Features with good class 
separation show clusters for 
each class, but different clusters 
should ideally be separated

F06 09.10.2013 

should ideally be separated. 
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Which numbers are well separated?Which numbers are well separated?
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Two correlated featuresTwo correlated features
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Aristotle and OccamAristotle and Occam

• Our search for models or hypotheses that describe the laws of nature     
is based on a ”minimum complexity principle”. 

A i t tl (384 322 BC) Ph i b k I h t VI• Aristotle (384-322 BC), Physics, book I, chapter VI: 
‘The more limited, if adequate, is always preferable’.

• William of Occam (1285-1349): 
‘Pluralitas non est ponenda sine necessitate’Pluralitas non est ponenda sine necessitate .

• The simplest model that explains the data is the best. 

• So far, “Occam’s Razor”  has generally motivated o a , O a a o a g a y o a d
the search and selection of reduced dimensionality feature sets. 

• It should also motivate us to generate
only a few but powerful featuresonly a few but powerful features.

• Many practitioners have forgotten the minimum complexity principle.
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The ”curse-of-dimensionality”The curse of dimensionality

• Also called ”peaking phenomenon”• Also called peaking phenomenon .
• For a finite training sample size,     

the correct classification rate initially 
increases when adding new featuresincreases when adding new features, 
attains a maximum and then begins 
to decrease.
Th i li ti i th t• The implication is that:

• For a high measurement complexity, 
we will need large amounts of 

d d h C t l ifi ti ttraining data in order to attain the 
best classification performance.

• => 5-10 samples 

Correct classification rate as
function of feature dimensionality,   

for different amounts of training data. 
Equal prior probabilities

per feature per class.

Illustration from G.F. Hughes (1968).

q p p
of the two classes is assumed.

Illustration from G.F. Hughes (1968).
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Feature subsetsFeature subsets

The goal is to find the subset of observed features• The goal is to find the subset of observed features 
which 
– best characterizes the differences between groups  
– is similar within the groups 
– Maximize the ratio of between-class and within-class 

variance. 

• If we want to perform an exhaustive search through D 
features for the optimal subset of the d ≤ m “bestfeatures for the optimal subset of the d ≤ m best 
features”, the number of combinations to test is 


m D!

• Impractical even for a moderate number of features!
 

 


d ddD
n

1 !!

d ≤ 5, D = 100  =>  n = 79.374.995
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A simulation study designA simulation study design
• H Schulerud and F Albregtsen: CMPB 73 1061-1073 2004• H. Schulerud and F.Albregtsen: CMPB, 73, 1061 1073, 2004.

• Monte Carlo study, averaging 100 simulations per setting
• 2 classes, normally distributed, common Covar = I
• 10 to 500 feature candidates
• Only 5 features are different between the classes

For these 5, the squared difference of class means = δ2/√5 ;   δ2 = 0, 1, 4

the rest of the continuous distributions are EQUAL! 

• Stepwise forward-backward feature selection
• 20 - 1000 training samples
• 20 - 1000 test samples
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Samples from distributionsSamples from distributions
4 5 204,5 20

0 0

Distribution of 2 independent sets Distribution of 2 independent sets of f p
of 20 samples from standardized 

normal distributions, δ2 = 0.

f p f
200 samples from standardized 

normal distributions, δ2 = 0.

• For small sample sets and small class distances, 
observations may indicate a separation of classes, 
while no real difference existswhile no real difference exists.
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Simulation results - Feature selectionSimulation results - Feature selection

• The number of correctly selectedThe number of correctly selected 
features increases with
– increasing # of training samples 
– decreasing number of  feature g

candidates
– (increasing class distance)

• For small sample sizes the 
number  of feature candidates
is of great importance :
– For D = 50 and δ2 = 1, 

half of the 5 selected features 
will be noise if  nTr = 100.

F D 50 δ2 1 50– For D = 50, δ2 = 1, nTr = 50,         
60% of the selected features 
will be noise!

The average number of correctly selected features,The average number of correctly selected features,
when the class Mahalanobis distance δ2 = 1.
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Learning goals – object descriptionLearning goals object description

• Invariant topological featuresInvariant topological features
• Projections and signatures
• Geometric features• Geometric features

– Area, perimeter and circularity/compactness
– Bounding boxesg
– Moments, binary and grayscale

• Ordinary moments and central moments
f b b d b f ll– Moments of objects, object orientation, and best fitting ellipse

– Scale invariance

• Inspection of feature scatter plots• Inspection of feature scatter plots
• “Curse of dimensionality” and feature selection 
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