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Introduction to classification

One of the most challenging topics in image analysis is recognizing a specific object in an image. To
do that, several steps are normally used. Some kind of segmentation can delimit the spatial extent
of the foreground objects, then a set of features to describe the object characteristics are
computed, before the recognition step that decides which object type this is.

The focus of the next three lectures is the recognition step. The starting point is that we have a set
of K features computed for an object. These features can either describe the shape or the gray
level/color properties of the object. Based on these features we need to decide what kind of an
object this is.

Statistical classification is the process of estimating the probability that an object belongs to one of
S object classes based on the observed value of K features. Classification can be done both
unsupervised or supervised. In unsupervised classification the categories or classes are not known,
and the classification process with be based on grouping similar objects together. In supervised
classification the categories or classes are known, and the classification will of consist of estimating
the probability that the object belongs to each of the S object classes. The object is assigned to the
blass with highest probability. For supervised classifcation, training data is needed. Training data
consists of a set of objects with know class type, and they are used to estimate the parameters of
the classifier.

The performance of a classifier is normally computed as the accuracy it gets when classifying a
different set of objects with known class labels called the test set.
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e Assume that each object /in the scene is represented by a feature vector x;.
e If we have computed K features, x; will be a vector with K components:

¢ A classifier that is based on K features is called a multivariate classifier.

e The K features and the objects in the training data set will define a K-
dimensional feature space.

e The training data set is a set of objects with known class labels.

As we saw last week, we can visualize class separation on data with known class
labels if we have one or two features, but visualizing multidimensional space is
difficult.
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e In the scatter plot, each object in the

training data set is plotted in K- o
dimensional space at a position ;
relative to the value of the K o ;
features. ol

e Each object is represented by a dot,
and the color of the dot represents ot

the class. In this example we have 4
classes visualize using 2 features.

e A scatter plot is a tool for visualizing . ‘ . ‘ . . ‘
features. We will later look at other @ = o0 " "
class separability measures.
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Concepts in classification

e In the following three lectures we will cover these
topics related to classification:
— Training set
— Test set
— Classifier accuracy/confusion matrices.

— Computing the probability that an object belongs to a class.

¢ Let each class be represented by a probability density function.
In general many probability densities can be used but we use
the multivariate normal distribution which is commonly used.

— Bayes rule

— Discriminant functions/Decision boundaries

— Normal distribution, mean vector and covariance matrices
— kNN classification

— Unsupervised classification/clustering
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Introduction to classification

e Supervised classification is related to thresholding
— Divide the image into two classes: foreground and background

e Thresholding is a two-class classification problem based on a 1D

feature vector
— The feature vector consist of only the grey level f(x,y)

e How can we classify a feature vector of K shape features into
correct character type?

e We will now study multivariate classification theory where we
use N features to determine if an object belongs to a set of K
object classes.

e Recommended additional reading:

— Pattern Classification, R. Duda, P. Hart and D. Stork.
e Chapter 1 Introduction
o Chapter 2 Bayesian Decision Theory, 2.1-2.6

e See ~inf3300/www_docs/bilder/dudahart_chap?2.pdf and
dudahart-appendix.pdfNF 4300 6




Plan for this lecture:

Explain the relation between thresholding and
classification with 2 classes

Background in probability theory
Bayes rule

Classification with a Gaussian density and a single
feature

Briefly: training and testing a classifier
— We og deeper into this in two weeks.
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From INF2310: Thresholding

Basic thresholding assigns all pixels in the image to
one of 2 classes: foreground or background

Oif f(x,y)<T

g(x’y):{l it f(xy)>T

This can be seen as a 2-class classification problem
based on a single feature, the gray level.

The 2 classes are background and foreground, and
the threshold T defines the border between them.
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Classification error for thresholding

A

- Background - Foreground

Threshold t

In|this region fforeground pixels
arg misclassjfied as background

Y

In this region, background P
misclassified as foreground

v
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Classification error for thresholding

e We assume that b(z) is the normalized histogram for
background H(z)and f(z) is the histogram for foreground.

e The histograms are estimates of the probability distribution of
the gray levels in the image.

e Let Fand B be the prior probabilities for background and
foreground(B+F=1)

e The normalized histogram for the image is then given by

p(z)=B-b(z)+F - f(2)
e The probability for misclassification given a treshold t is:

E,(t) = j f(2)dz

Ec (1) = [b(z)dz
t INF 4300 10




Find T that minimizes the error

EQ)=F[ f(z)dz+ B[ "b(z)dz

9EW® o k. (T)=B-b(T)

Minimum error is achieved by setting T equal to the
point where the probabilities for foreground and
background are equal.
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Distributions, standard deviation and variance

e A Gaussian distribution (normal distribution) is specified given the
mean value p and the variance c2:

C(x-u)?
p()=———e
\|2no

e Variance o standard deviation o

Cravzsian, mesn = 5
0.9+

0.8+

0.7 4

||||||||||||||
----------------------
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Two Gaussian distributions for
a single feature

e Assume that H(z) and f(z) are Gaussian distributions,
then

o o

B
PE)= 270y’ 270,

e ugand pe are the mean values for background and
foreground.

e o2 and o2 are the variance for background and
B F
foreground.
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The 2-class classification problem summarized

e Given two Gaussian distributions 5(z) and 7(z).
e The classes have prior probabilities F and B.

e Every pixel should be assigned to the class that
minimizes the classification error.

e The classification error is minimized at the point
where F f(z) = B b(2).

e What we will do now is to generalize to K classes
and D features.
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How do we find the best border
beteen K classes with 2 features?

o We will find the theoretical answer and a geometrical

interpretation of class means, variance, and the
equivalent of a threshold.

MinoréxisLength vs. MajoréxisLength for Symbols 1-6 and outliers (171}
0r

60

. &
n p PO
Rl S

— @ N o ora =

-

40t
L *

a0 PO

20t

§4

101

o 1} =} 10 15 20 25 30 34
INF 4300 15

The goal of classification

We estimate the decision boundaries based on
training data.

Classification performance is always estimated on a
separate "test” data set.

— We try to measure the generalization performance.

The classifier should perform well when classifying
new samples

— Have lowest possible classification error.

We often face a tradeoff between classification error

on the training set and generalization ability when
determining the complexity of the decision boundary.
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Probability theory - Appendix A.4

Let x be a discrete random variable that can assume
any of a finite number of M different values.

The probability that x belongs to class i is

p, = Pr(x=i), i=1,...M
A probability distribution must sum to 1 and
probabilities must be positive so p>0 and Zp =1
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Expected values - definition

e The expected value or mean of a random variable x

IS: "
E[=p=2 P00 =2 ip

e The variance or second order moment o2 is:

E[xz]:y = x*P(x)
Var[x]=o’ = E[(x—u)z]: ZX:(X—U)ZP(X)

e These will be estimated from training data where we

know the true class labels (foil 39 for the univariate
case).
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Pairs of random variables

Let xand y be random variables.

The joint probability of observing a pair of values
(X=i,y=]) is pj;.

Alternatively we can define a joint probability
distribution function P(x,y) for which

P(x,y)=0, > > P(x,y)=1

The marginal distributions for x and y (if we want to
eliminate one of them) is:

P.(x)=>_P(x,y)
P,(y)=> P(x,y)
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Statistical independence
Expected values of two variables

Variables x and y are statistical independent if and
only if  P(x y)=P.(xP,(y)
Two variables are uncorrelated if

0y =0
Expected values of two variables:
B(FOo=2. 2 F X yP(Y) Where (in this
f= E(x):ZZxP(x ) course) have you
seen similar
“EOF ZZyP(x V) formulas?

ol —E[x ) ]:ZZX u, YP(x,y)
~fly- ﬂy)ZPZZy #,FP(x,y)
oy =Elx-m)ly-4,) ]:ZZ Ny - 4, P(x,y)
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Feature

.--. Can you sketch
- FsHy O,y *, Oy

Feature 1
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Conditional probability

If two variables are statistically dependent, knowing the value
of one of them lets us get a better estimate of the value of the
other one.

The conditional probability of x given yis:

Prix =i,y + j]

PI’[X:i|y:j] Pr[y ]

and for distributions :

P(x,y)
P =
x1y) PY)
Example: Threshold a page with dark text on white background

X is the grey level of a pixel, and y is its class (F or B).

If we consider which grey levels x can have - we expect small
values if x is text (y=F), and large values if x is background

(y=B).
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Expected values of M variables

e Using vector notation:

n= E[x]: ZXP(X)

£ =E[x-p)x-n)]
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Bayesian decision theory

o A fundamental statistical approach to pattern
classification.

 Named after Thomas Bayes (1702-1761), an english
priest and matematician.

e It combines prior knowledge about the problem with
a probability distribution function.

e The most central concept is Bayes decision rule.
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Bayes rule in general

The equation:

P(y[x)P() _ P(y[x)P(x)
2 P(YIX)P(x) P(y)

P(x|y)=

In words:

likelihood x prior
evidence

posterior =

e y are observations, x is the unknown class labels.

We want to find the most probable class x given the
observations y.

To be explained for the classification problem later :-)
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Mean vectors and covariance matrices
in N dimensions

o If f(x) is a n-dimensional feature vector, we can formulate its
mean vector and covariance matrix as:

f,(x) E(x) H
(%) E(xp) Ha
f(x)=| . n=Elx]=| . |=|.

fn (X) E()] Lt
2
011 %12 - - O of o . . Oy
2
On 02 - : Oon Oy 05 . . Oy,
=] . N

2
Ont On2 - - Onp Oy Opp - . Op

with n features, the mean vector p will be of size 1xn and X or
size nxn.

e The matrix will be symmetric as o= o
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Bayes rule for a
classification problem

Suppose we have J, j=1,...] classes. o is the class label for a
pixel, and xis the observed gray level (or feature vector).

We can use Bayes rule to find an expression for the class with
the highest probability:

_ p(X|a)j)P(a)j)
p(x)
likelihood x prior probability
normalizing factor

P(o, |X)

posterior probability =

For thresholding, P(w;) is the prior probability for background or
foreground. If we don't have special knowledge that one of the
classes occur more frequent than other classes, we set them
equal for all classes. (P(w;)=1/3, j=1.,,,3).
Small p means a probability distribution
Capital P means a probability (scalar value between 0 and 1)
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Bayes rule explained

_ p(X| a)j)P(a)j)
p(x)

p(x|w;) is the probability density function that models the likelihood
for observing gray level x if the pixel belongs to class o,

— Typically we assume a type of distribution, e.g. Gaussian, and
the mean and covariance of that distribution is fitted to some
data that we know belong to that class. This fitting is called
classifier training.

P(w;[x) is the posterior probability that the pixel actually belongs to
class o; We will soon se that the the classifier that achieves the
minimum error is a classifier that assigns each pixel to the class o;
that has the highest posterior probability.

p(x) is just a scaling factor that assures that the probabilities sum
to 1.

P(a; [x)
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Probability of error

e If we have 2 classes, we make an error either if we

decide o, if the true class is , if we decide o, if the
true class is o

e If P(w{|X) > P(®w,]|x) we have more belief that x
belongs to ®;, and we decide o,

e The probability of error is then:

P(a, | X) if we decide w,
P(w, | X) if we decide o,

P(error | x):{
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Back to classification error for thresholding

- Background - Foreground

P(error)= jP(error, X)dx =fP(error | X) p(x)dx

In{this region fforeground pixels

are misclassjfied as background In this region, background pi

misclassified as foreground

v
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Minimizing the error

P(error)= T P(error, x)dx = T P(error | x) p(x)dx

* When we derived the optimal threshold, we showed
that the minimum error was achieved for placing the
threshold (or decision border as we will call it now) at
the point where

P(®,|Xx) = P(®,|x)
e This is still valid.
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Bayes decision rule

e In the 2 class case, our goal of minimizing the error
implies a decision rule:
Decide w, if P(w,|x)>P(w,| x); otherwise w,

e For Jclasses, the rule analogusly extends to choose
the class with maximum a posteriori probability

e The decision boundary is the"border” between
classes 7and j, simply where A(w|x)=P(w, x)

— Exactly where the threshold was set in minimum error
thresholding!

INF 3300 32




Bayes classification with J classes

and D features

 How do we generalize:
— To more the one feature at a time
— To J classes

— To consider loss functions (that some errors are more costly
than others)
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Bayes rule with c classes and d features

o If we measure d features, x will be a d-dimensional
feature vector.

e Let {®y,....,0} be a set of c classes.

e The posterior probability for class c is now computed

as
_ p(x| a)j)P(a)j)
p(x)

P(= Y. p(x|@))P(@)

P(o; [x)

e Still, we assign a pixel with feature vector x to the
class that has the highest posterior probability:

Decide o, if P(w, | x) > P(w; | x), forall j =i
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Discriminant functions

e The decision rule
Decide w, if P(w,|x) > P(@; | x), forall j #i
can be written as assign x to o, if
g; (x) > 9g;(x)
e The classifier computes J discriminant functions g(x)

and selects the class corresponding to the largest
value of the discriminant function.

e Since classification consists of choosing the class that
has the largest value, a scaling of the discriminant
function g;(x) by f(g,(x)) will not effect the decision if
f is @ monotonically increasing function.

e This can lead to simplifications as we will soon see.
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Equivalent discriminant functions

e The following choices of discriminant functions give
equivalent decisions:

0,09 = Py [ x) = PX1 2%
8

9;(x)= p(x| @) P(@)
g;(x)=Inp(x| @) +InP(aw;)

¢ The effect of the decision rules is to divide the feature space
into c decision regions R;,......R..

o If g(x)>g;(x) for all j#i, then x is in region R,.
e The regions are separated by decision boundaries, surfaces in

features space where the discriminant functions for two classes
are equal
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Decision functions - two classes

o If we have only two classes, S— S
assigning x to w, if g;>g, is
equivalent to using a single
discriminant function: g(x) = !
9:(x)-g(X) !
and decide o, if g(x)>0

e The following functions are
equivalent:

0.3 ] p(x|m1}P(T) . px| 0,)P(w,)

02"

g (x)=P (@, | x) - P (@, | x) Sy -
0 ()= n PO 1) %
p(x|,)
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The Gaussian density -
univariate case (a single feature)

e To use a classifier we need to select a probability
density function p(x|w;).

e The most commonly used probability density is the
normal (Gaussian) distribution:

p(0= \/%G exp{—;( e j }

with expected value (or mean) x = E[x]|= f xp(x)dx

and variance o = E[(X—,u)z]: J‘:(x—ﬂ)2 p(x)dx
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Training a univariate Gaussian classifier

e To be able to compute the value of the discriminant function,
we need to have an estimate of y; and o2 for each class j.

e Assume that we know the true class labels for some pixels and
that this is given in a mask image.

e Training the classifier then consists of computing M and GJ-Z for
all pixels with class label j in the mask file.

e They are computed from training data as:
e For all pixels x; with label k in the training mask, compute
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Classification with a univariate Gaussian

» Decide on values for the prior probabilities, P(«;). If we have no
prior information, assume that all classes are equally probable
and P(w;)=1/c.

 Estimate y; and o;? based on training data based on the
formulae on the previous slide.

e For class j=1,....], compute the discriminant function
F’(w,-IX)—p(XIa),-)F’(w,»)—maje p{ 2[ o ”P(w,)

* Assign pixel x to the class with the highest value of P(w;|x)

The result after classification is an image with class labels
corresponding to the most probable class for each pixel.

We compute the classification error rate from an independent test
mask.
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Example: image and training masks

The masks contain labels for the
training data.

If a pixel is not part of the
training data, it will have label 0.
A pixel belonging to class k will
have value k in the mask image.

We should have a similar mask
for the test data.
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Estimating classification error

e A simple measure of classification accuracy can be to
count the percentage of correctly classified pixels
overall (averaged for all classes), or per. class. If a
pixel has true class label k, it is correctly classified if
w;=k.

o Normally we use a pixels to train and test a classifier,
so we have a disjoint training mask and test
mask.

e Estimate the classification error by classifying all
pixels in the test set and count the percentage of
wrongly classified pixels.
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