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Bayes rule for a 
classification problem

• Suppose we have J, j=1,...J classes.  is the class label for a 
l d h b d f )pixel, and x is the observed feature vector).  

• We can use Bayes rule to find an expression for the class with
the highest probability:the highest probability:
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• P(j) is the prior probability for class j. If we don't have special
knowledge that one of the classes occur more frequent than
other classes we set them equal for all classes (P( )=1/Jother classes, we set them equal for all classes. (P(j)=1/J, 
j=1.,,,J).
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Bayes rule explainedBayes rule explained
)()|(x Pp 

• p(x|j) is the probability density function that models the
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• p(x|j) is the probability density function that models the
likelihood for observing feature vector x if the pixel belongs to 
class j.  

T i ll t f di t ib ti G i d– Typically we assume a type of distribution, e.g. Gaussian, and 
the mean and covariance of that distribution is fitted to some
data that we know belong to that class. This fitting is called
classifier training. 

• P(j|x) is the posterior probability that the pixel actually belongs to 
class jclass j. 

• p(x) is just a scaling factor that assures that the probabilities sum 
to 1. 
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The conditional density p(x|  )The conditional density p(x| s)
• Any probability density function can be used to model p(x|  )• Any probability density function can be used to model p(x| s) 
• A common model is the multivariate Gaussian density.
• The multivariate Gaussian density:y
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• If we have n features, s is a vector of length n and and s a nn
matrix (depends on class s)
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 is the covariance between

| | i th d t i t f th t i  d  1 i th i





























 nnnnnn

S

ns

S





 121

1131

.

.....

...                          Σμ ij is the covariance between
feature i and feature j
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• |s| is the determinant of the matrix s,  and s
-1 is the inverse
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Mean vectors and covariance matrices
i di iin n dimensions

If x is a n dimensional feature vector for one• If x is a n-dimensional feature vector for one
object/pixel, we can formulate its mean vector and 
covariance matrix as:  )(xEx covariance matrix as:
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• with n features the mean vector  will be of size 1xn
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• with n features, the mean vector  will be of size 1xn 
and  or size nxn.

INF 4300 530.10.13

Inspecting p(x| )Inspecting p(x|s)
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Th t f h lThe mean vectors s for each class

• The mean vector for class s is defined as the expected value of• The mean vector for class s is defined as the expected value of
x:
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• with n features, the mean vector  will be of size 1xn.
• If we have M training samples that we know belong to class s
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If we have Ms training samples that we know belong to class s, 
we can estimate the mean vector as:
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Th i t i f h lThe covariance matrix s for each class
• The covariance for class s is defined as the expected value of (x-)(x- )t:
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• with n features, the covariance matrix s will be of size nxn.
• If we have Ms training samples that we know belong to class s, we can

estimate the covariance matrix s as:
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• Each term ij is computed as:
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s classfor   j and i featurebetween  covariance for the
sM
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M th i t iMore on the covariance matrix s

• The covariance matrix s will always be symmetric and positive 
semidefinite. 

• If all components of x have non-zero variance, s will be positive 
definitedefinite. 

• ij is the covariance between features i and j. 
• If features xi and x j are uncorrelated, ij = 0.j j

• In the general case, s will have n(n+1)/2 different values.
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A 2D Gaussian modelA 2D Gaussian model
• Parameters μ and Σ define a density• Parameters μ and Σ define a density 

as a ”bump”
• The curves on the plot are contours 

of equal probability just as theof equal probability, just as the 
contours on a map

• The matrix Σ in this case has three 
different elements variance in eachdifferent elements, variance in each 
of the axes, and covariance between 
the axes
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• 12=21 is the covariance between 
feature 1 and 2

• 22
2 is the variance for feature 2
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22 is the variance for feature 2
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The covariance matrix and ellipsesThe covariance matrix and ellipses
• In 2D, the Gaussian model can be 

thought of as approximating the classes inthought of as approximating the classes in 
2D feature space with ellipses.

• The mean vector =[1, 2] defines the
the center point of the ellipses.

•  the covariance between the features• 12, the covariance between the features 
defines the orientation of the ellipse.

• 11 and 22 defines the width of the ellipse 
(the a and b parameters). 

• The ellipse defines points where the
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– Equal in the sense that the distance to the
mean as computed by the Mahalanobis
distance is equal.
The Mahalanobis distance between a point– The Mahalanobis distance between a point
x and the class center  is:
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The main axes of the ellipse 
is determined by the
eigenvectors of .
The eigenvalues of  gives
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The eigenvalues of  gives
their length.
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Euclidean distance vs. 
Mahalanobis distance

Euclidean distance
Points with equal
distance to lie on a• Euclidean distance

between point x and class
center : 

distance to  lie on a 
circle.

center :
    2  xxx T



• Mahalanobis distance
between x and :bet ee a d 

      xxr T 12

Points with equal
distance to  lie on an 
ellipse.
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Discriminant functions
for the normal density

• We saw last lecture that the minimum error rate classification• We saw last lecture that the minimum-error-rate classification
can computed using the discriminant functions
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• With a multivariate Gaussian we get:
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• Let ut look at this expression for some special cases: 
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Case 1: Σ=σ2ICase 1: Σj=σ2I
• Consider that we assume the features uncorrelated (independent) with• Consider that we assume the features uncorrelated (independent) with

the same variance σ2

• The covariances σij=0 (by definition if the features are uncorrelated).
Th di i i t f ti ill b i lifi d t• The discriminant functions will be simplified to: 
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• We show this on the next slide
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• We show this on the next slide
• Thus we model the probabilities as n-dimensional spheres because

points that have equal discriminant function will lie on a circle around
the meanthe mean i .

• Σj
-1=I/σ2

• |Σj|= σ2n
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Case 1: Σ=σ2ICase 1: Σj=σ2I

• The discriminant functions simplifies to linear functions using
such a shape on the probability distributions
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Common for all classes, no need to compute these two terms
Since xTx is common for all classes g (x) reduces to a linear
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Since xTx is common for all classes, gj(x) reduces to a linear 
function of x.
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Case 1: Σ=σ2ICase 1: Σj=σ2I
• An equivalent formulation of the discriminant functions:• An equivalent formulation of the discriminant functions:

)(l
1

0d
1

h

0)(

t

i
t
ii

Pi

wg  xwx

• The equation gi(x)=gj(x) can be written as

)(ln
2

0and where
22 ii

t
iii Pwi 


 μμμw

0)(t

   ji

2

ji0

ji

0

-
)(

ln-
1

 and

- where

0)(

μμμμ

μμw

xxw

i

t

P
x







• w=i-j is the vector between the mean values. 
• This equation defines a hyperplane through the point x0, and 
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orthogonal to w. 

• If P(i)=P(j) the hyperplane will be located halfway between the
mean values.
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A simple model Σ=σ2IA simple model, Σj=σ2I

• The distributions are spherical in n dimensions.
f• The decision boundary is a generalized hyperplane of n-1 dimensions

• The decision boundary is perpendicular to the line separating the two
mean values

• This kind of a classifier is called a linear classifier or a linear• This kind of a classifier is called a linear classifier, or a linear 
discriminant function
– Because the decision function is a linear function of x.

• If P(i)= P(i), the decision boundary will be half-way between i and 
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Minimum distance classificationMinimum distance classification
• If all classes have equal prior probabilities x will be the point halfway• If all classes have equal prior probabilities, x0 will be the point halfway

between the mean vectors. 
• Classification will consist of assigning feature vector x to the same class

as the closest mean measured by Euclidean distance ||x-i||.
• A classifier based on the Euclidean distance is called a minimum 

distance classifier. 
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Case 2: Common covariance Σ= ΣCase 2: Common covariance, Σj= Σ

• If we assume that all classes have the same shape of data• If we assume that all classes have the same shape of data 
clusters, an intuitive model is to assume that their probability 
distributions have the same shape

• By this assumption we can use all the data to estimate the 
covariance matrix

• This estimate is common for all classes and this means that• This estimate is common for all classes, and this means that 
also in this case the discriminant functions become linear 
functions
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Since xTx is common for all classes, gj(x) again reduces to 
a linear function of x.
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Case 2: Common covariance Σ= ΣCase 2: Common covariance, Σj= Σ

• An equivalent formulation of the discriminant functions is• An equivalent formulation of the discriminant functions is

where
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• The decision boundaries are again hyperplanes.
• Because wi= Σ-1(i- j) is not in the direction of (i- j), the

hyperplan wil not be orthogonal to the line between the meanshyperplan wil not be orthogonal to the line between the means.
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Common covariance Σ= ΣCommon covariance, Σj= Σ

• The classes can be described by hyperellipsoides in d dimensions.
• All hyperellipsoids have the same orientation.
• The decision boundary will again be a hyperplane.
• Because w= Σ-1(i-j) is generally not in the direction of i-j, the

hyperplane will not be perpendicular to the line between the meanshyperplane will not be perpendicular to the line between the means. 
• Consider a point x0 on the line i-j. defined by the prior probabilities:

– If P(i)= P(i), x0 will be half way between the means.
– The separating hyperplane will intersect the line at x0
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The separating hyperplane will intersect the line at x0
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Case 3: Σ=arbitraryCase 3:, Σj=arbitrary

When all classes are modeled as having different• When all classes are modeled as having different
shapes, the discriminant functions cannot be 
simplifiedsimplified

• This means that the discriminant functions will be 
quadratic functionsq

• Decision boundaries will be hyperquadrics andDecision boundaries will be hyperquadrics and 
assume any of the general forms:
– hyperplanes, pairs of hyperplanes, hyperspheres, 

h ll d h b l d h h b l dhyperellisoides, hyperparaboloids, hyperhyperboloids...
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Case 3: Σ=arbitraryCase 3:, Σj=arbitrary
• The discriminant functions will be quadratic:• The discriminant functions will be quadratic:
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• The decision surfaces are hyperquadrics and can assume any of
the general forms:
– hyperplanesyp p
– hypershperes
– pairs of hyperplanes
– hyperellisoids, yp ,
– Hyperparaboloids,..

• The next slides show examples of this. 
• In this general case we cannot intuitively draw the decision boundaries
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• In this general case we cannot intuitively draw the decision boundaries
just by looking at the mean and covariance. 
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The full model Σ=arbitrary exampleThe full model, Σj=arbitrary - example
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The full model Σj=arbitrary exampleThe full model, Σj=arbitrary - example
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The full model Σ=arbitrary exampleThe full model, Σj=arbitrary - example
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The full model Σj=arbitrary exampleThe full model, Σj=arbitrary - example
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The full model Σj=arbitrary exampleThe full model, Σj=arbitrary - example
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The full model Σj=arbitrary exampleThe full model, Σj=arbitrary - example
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The full model Σj=arbitrary exampleThe full model, Σj=arbitrary - example
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A multiclass exampleA multiclass example
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Is the Gaussian classifier 
the only choice?

The Gaussian classifier gives linear or quadratic• The Gaussian classifier gives linear or quadratic
discriminant function.

• Other classifiers can give arbitrary complex decision• Other classifiers can give arbitrary complex decision
surfaces (often piecewise-linear)
– Mixtures of Gaussians
– Neural networks
– Support vector machines
– kNN (k-Nearest-Neighbor) classification (next week)
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Learning goals from this lectureLearning goals from this lecture

Be able to use and implement Bayes rule with a n• Be able to use and implement Bayes rule with a n-
dimensional Gaussian distribution.

• Know how  and  are estimated• Know how s and s are estimated. 
• Understand the 2-dimensional case where a 

covariance matrix is illustrated as an ellipsecovariance matrix is illustrated as an ellipse. 
• Be able to simplify the general discriminant function

for 3 cases.for 3 cases.
• Have a geometric interpretation of classification with

2 features. 
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If we have timeIf we have time…

If time allows we include the following slides in this• If time allows, we include the following slides in this
lecture
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Using masks to train and testUsing masks to train and test

T i i k k h• Training mask: a mask where 
regions to train each class are 
marked using different pixelmarked using different pixel 
values, e.g. class label=1 for 
class 1, 2 for class 2 etc. 
•Test mask: a similar mask as 
training, but to estimate 
l ifi lclassifier accuracy only. 
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Training a classifierTraining a classifier
• Obtain as many ground truth samples for each class as possibleObtain as many ground truth samples for each class as possible 

– If visual inspection is reliable, experts can mark training regions 
interactively.

– For remote sensing, go out in the field and collect field samples (or use 
images from a different sensor)images from a different sensor)

– For symbol recognition, mark a set of symbols manually.
– For medical applications, use e.g. tissue samples or interpretations made by 

experts.
Di id th d t th i t t i i t d t t t• Divide the ground truth into a training set and a test set.

• Use feature extraction and feature selection/evaluation to determine 
the best set of features.

• Decide if a linear or quadratic classifier is needed.

s̂ has n elements
ˆ

• For each class, compute s (and s)using the given Maximum Likelihood 
estimates.

s̂ has n(n-1)/2 elements
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Classifying new dataClassifying new data

For each sample compute the posterior probabilities• For each sample, compute the posterior probabilities 
for each class.
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• Classify the sample to the class with the highest
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• Classify the sample to the class with the highest 
posterior probability.

• Evaluate the performance of the classifier• Evaluate the performance of the classifier. 
• We can also produce images of the posterior 

probability for each class.
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probability for each class.
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Validating classifier performanceValidating classifier performance
• Classification performance is evaluated on a different• Classification performance is evaluated on a different 

set of samples with known class - the test set.
• The training set and the test set must be e a g se a d e es se us be

independent!
• Normally, the set of ground truth pixels (with known 

l ) i ti i d i t t f t i i i l dclass) is partionioned into a set of training pixels and 
a set of test pixels of approximately the same size. 

• This can be repeated several times to compute more• This can be repeated several times to compute more 
robust estimates as average test accuracy over 
several different partitions of test set and training 

tset.
– By selecting e.g. 10 random partitions of the set of samples 

into a training set and a test set. 
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Confusion matricesConfusion matrices
• A matrix with the true class label versus the estimated 

class labels for each class
Estimated class labels

T
rue

Class 1 Class 2 Class 3 Total 
#sampl
ese class

Class 1 80 15 5 100

Class 2 5 140 5 150

s labels

Class 2 5 140 5 150

Class 3 25 50 125 200s

Total 110 205 135 450
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Confusion matrix contConfusion matrix - cont.
Alternatives:

Class 
1

Class 
2

Class 
3

Total 
#sam
l

Alternatives: 

•Report nof. correctly classified 
pixels for each class.

1 2 3 ples

Class 1 80 15 5 100

Class 2 5 140 5 150

Class 3 25 50 125 200

•Report the percentage of 
correctly classified pixels for 
each class Class 3 25 50 125 200

Total 110 205 135 450
each class.

•Report the percentage of 
correctly classified pixels incorrectly classified pixels in 
total.

•Why is this not a good y g
measure if the number of 
test pixels from each class 
varies between classes?
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A classification exampleA classification example

Landsat image with 6 spectral bands
The 6 bands will be the features
Training areas and test areas shown 
in maskin mask

Upper part: RGB-false color image created from bands 
4,5 and 6 with training and test regions overlaid.

Lower part: image of training regions only
•

1 41

3
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2
3

30.10.13

Visual inspection of feature 1Visual inspection of feature 1 

Class 2 (forest) seems to be well separated,
Maybe also class 1 (urban)

1 4

2 3
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Visual inspection of feature 2Visual inspection of feature 2 

Class 2 (forest) seems to be well separated
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Visual inspection of feature 3Visual inspection of  feature 3 

Class  2 (forest) seems to be well separated,
Class 1 (urban) seems to be well separated
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Visual inspection of feature 4Visual inspection of  feature 4 

Class 1 (water) seems to be well separated,
Maybe also class 4 (agricultural)
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Visual inspection of feature 5Visual inspection of feature 5 

Water and forest appears similar 
- but the variance might be 
differentdifferent

Urban and agricultural appears 
similar – but the variance might g
be different
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Visual inspection of feature 6Visual inspection of feature 6 

Seems similar to feature 5,
but with better contrastbut with better contrast
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Selected scatter plots (gscatter)Selected scatter plots (gscatter)

Scatterplot between feature 1 and 4 Scatterplot between feature 5 and 6
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Classified imagesClassified images

The entire image classified to the most probable class

INF 4300 49

The entire image classified to the most probable class
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Display the posterior probabilities
ias images

Dark values: 

P t i b bilit f l b

Probabilities close to 0

Bright values:
Probabilities close to 1

Posterior probability for class urban Posterior probability for class forest

Posterior probability for class water
Posterior probability for class agricultural
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Confusion matrix
f th t i i tfor the training set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1340 2 0 310

Class 1 43 1253 0 2

Cl 3 0 0 38 0Class 3 0 0 1738 0

Class 4 131 3 0 1266

Accuracy per class:     Averaged over all classes: 91.7%
Class1: 81%Class1: 81%
Class2: 96%
Class3: 100%
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Class4: 90%
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Confusion matrix
f th t t tfor the test set

True class Assigned to
Class1

Assigned to
Class2

Assigned to
Class 3

Assigned to
Class4

Class 1 1474 3 1 251

Class 1 513 2311 0 0

Cl 3 0 9 3 0Class 3 14 0 1953 0

Class 4 213 2 0 1390

Accuracy per class:      Averaged over all classes: 87.5%
Class1: 85%
Class2: 81%
Class3: 98%
Class4: 86%
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Class4: 86%
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