INF 4300 - Digital Image Analysis

HOUGH TRANSFORM

F3 05.09.16
INF 4300

Introduction to HT

- The Hough transform (HT) can be used to detect
- Lines
- Circles and ellipses
- Other parametric curves
- Introduced by Paul Hough (1962)
- First used to find lines in images a decade later (Duda \& Hart 1972).
- Our first goal is to find the location of lines in images.
- This problem could be solved by e.g.
- Morphology using a linear structuring element of a given direction
- Then we would need to handle rotation, scaling, distortions etc
- Fitting a line (regression)
- Then we need to know which edge pixels to use as input,
to handle one line segment at a time
- HT can give robust detection under noise and partial occlusion.

Plan for today

This lecture includes more details than G\&W 10.2 !

- Introduction to Hough transform
- Using gradient information to detect lines
- Representing a line
- The [a,b]-representation
- The $[\rho, \theta]$-representation
- Algorithms for detection of lines
- Detecting circles and ellipses

An image with linear structures

- Borders between the regions are straight line segments.
- These lines separate regions with different grey levels.
- Edge detection is often used as preprocessing to Hough transform.

- The input image must be a thresholded edge image.
- The magnitude results computed by e.g. the Sobel operator can be thresholded and used as input.

F3 05.09.16

Repetition - Basic edge detection

- A thresholded edge image is the starting point for HT.
- What does a Sobel filter produce?
- An approximation to the image gradient which is a vector quantity given by:

$$
\nabla f(x, y)=\left[\begin{array}{l}
g_{x} \\
g_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{array}\right]
$$

Repetition - Edge magnitude

- The gradient is a measure of how the function $f(x, y)$ changes as a function of changes in the arguments x and y .
- The gradient vector points in the direction of maximum change.
- The length of this vector indicates the size of the gradient:

$$
|\nabla f|=\sqrt{g_{x}^{2}+g_{y}^{2}}
$$

$\mathrm{G}_{\mathrm{x}}, \mathrm{G}_{\mathrm{y}}$, and the gradient operator

- Horisontal edges:
- Compute $g_{x}(x, y)=H_{x}{ }^{* f}(x, y)$
- Convolve with the horisontal filter kernel H_{x}
- Vertical edges:
- Compute $g_{y}(x, y)=H_{y}^{*} *(x, y)$
- Convolve with the vertical filter kernel H_{y}
- Compute the gradient parameters as:

$$
\begin{array}{ll}
G(x, y)=\sqrt{g_{x}^{2}(x, y)+g_{y}^{2}(x, y)} & \text { Gradient magnitude } \\
\theta(x, y)=\tan ^{-1}\left(\frac{g_{y}(x, y)}{g_{x}(x, y)}\right) & \text { Gradient-direction }
\end{array}
$$

- Note: from one input image, you produce four images:
- $g_{x}(x, y), g_{y}(x, y), G(x, y)$, and $\theta(x, y)$.

F3 05.09.16
9

Hough-transform

- Assume that we have performed some edge detection, and a thresholding of the gradient magnitude image.
- We have n pixels that may partially describe the boundaries of some objects.
- We wish to find sets of pixels that make up straight line segments.
- Regard a point ($x_{i j} y_{j}$)
and a straight line $y_{i}=a x_{i}+b$
- Many lines may pass through the point $\left(x_{i} y_{i}\right)$.
- Common to them is that they satisfy the equation above for varying values of the parameters (a, b).

Input to Hough - thresholded edge image

Prior to applying Hough transform:

- Get edge magnitude from input image.
- As always with edge detection, simple lowpass filtering can be applied first.
- Threshold gradient magnitude image.
- Note that thresholding of gradient magnitude may be tricky!
- Assumptions of e.g. Otsu may be wrong..
- Gradient histogram is seldom bi-modal ...

F3 05.09.16
INF 4300

10

Hough transform - basic idea

Hough transform - basic idea

- Given a line in the (x, y) - plane:

$$
y=a x+b
$$

- This equation can obviously be rewritten as follows:

$$
b=-x a+y
$$

- We now consider (x, y) as parameters and (a, b) as variables.
- This is a line in (a, b) - plane parameterized by x and y.
- So: a point $\left(x_{1} y_{1}\right)$ in $x y$ - space gives a line in (a, b) space.
- Another point $\left(x_{2} y_{2}\right)$ on the same line $y=a x+b$ in $x y$-space will give rise to another line in $(a, b)-$ space.

Hough transform - basic idea

- Two points (x, y) and (z, k) define a line in the (x, y) plane.
- These two points give two different lines in (a, b) space.
- In (a, b) space these lines will intersect in a point $\left(a^{\prime}, b^{\prime}\right)$ where a^{\prime} is the slope and b^{\prime} the intercept of the line defined by (x, y) and (z, k) in (x, y) space.
- In fact, all points on the line defined by (x, y) and (z, k) in (x, y) space will parameterize lines that intersect in (a^{\prime}, b^{\prime}) in (a, b) space.
- Points that lie approximately on a line in the (x, y) space will form a "cluster of crossings" in the (a, b) space.

Hough transform - algorithm

- Quantize the parameter space (a, b), i.e., divide it into cells.
- This quantized space is often referred to as the accumulator cells.
- In the figure in the next slide $a_{\min }$ is the minimal value of a, etc.
- Count the number of times a line intersects a given cell.
- For each point (x, y) with value 1 in the binary image, find the values of (a, b) in the range $\left[\left[a_{\min }, a_{\max }\right],\left[\mathrm{b}_{\text {min }}, \mathrm{b}_{\text {max }}\right]\right]$ defining the line corresponding to this point.
- Increase the value of the accumulator for these $\left[\mathrm{a}^{\prime}, \mathrm{b}^{\prime}\right]$ point.
- Then proceed with the next point in the image.
- Cells receiving more than a given number of "votes" are assumed to correspond to lines in (x, y) space.
- Lines can be found as peaks in this accumulator space.

Hough transform - algorithm

F3 05.09.16
INF 4300

Polar representation of lines

- In practice, we do not use the equation

$$
y=a x+b
$$

in order to represent lines (why?)

- Rather, we use the polar representation of lines:

$$
x \cos \theta+y \sin \theta=\rho
$$

- where ρ is the length of the normal from origo to the line, and θ is the angle between this normal and the x-axis.
- You should verify that this is true for any (x, y) on the line!

Example - images and accumulator space
Thresholded
edge images

HT and polar representation of lines

Polar representation of lines

Hough transform and the polar representation

- The polar (also called normal) representation of straight lines is

$$
x \cos \theta+y \sin \theta=\rho
$$

- Each point ($x_{i j} y_{j}$) in the xy-plane gives a sinusoid in the $\rho \theta$-plane.
- M colinear point lying on the line

$$
x_{i} \cos \theta+y_{i} \sin \theta=\rho
$$

will give M curves that intersect at $\left(\rho_{i}, \theta_{\mathrm{j}}\right)$ in the parameter plane.

- Local maxima in parameter domain
correspond to significant lines in the image domain.

HT with (ρ, θ)-representation of lines

- Partition the $\rho \theta$-plane into accumulator cells $A[\rho, \theta]$, $\rho \in\left[\rho_{\text {min }}, \rho_{\max }\right] ; \theta \in\left[\theta_{\text {min }}, \theta_{\text {max }}\right]$
- The range of θ is $\pm 90^{\circ}$
- Horizontal lines have $\theta=0^{\circ}, \rho \geq 0$
- Vertical lines have $\theta=90^{\circ}, \rho \geq 0$
- The range of ρ is $\pm \operatorname{sqrt}\left(\mathrm{M}^{2}+\mathrm{N}^{2}\right)$
if the image is of size MxN
- The discretization of θ and ρ must give acceptable precision within and size of the parameter space.

Two points on a line

- Each curve in the figure represents the familiy of lines that may pass through a particular point ($x_{j} y_{i}$) in the $x y$-plane.
- The intersection point ($\rho^{\prime}, \theta^{\prime}$) corresponds to the line that passes through two points ($x_{i j} y_{i}$) and ($x_{j} y_{i}$)
- A horizontal line will have $\theta=0$ and ρ equal to the intercept with the y-axis.
- A vertical line will have $\theta=90$ and ρ equal to the intercept with the x -axis.

Algorithm continued

- The cell (i, j) corresponds to the square associated with parameter values $\left(\theta_{j}, \rho_{\mathrm{i}}\right)$.
- Initialize all $A(i, j)$ cells with value 0 .
- For each foreground point $\left(x_{k}, y_{k}\right)$ in thresholded edge image - For all possible θ-values
- Solve for ρ using $\rho=x_{k} \cos \theta_{j}+y_{k} \sin \theta_{j}$
- Round ρ to the closest cell value, ρ_{q}
- Increment $A(i, q)$ if the θ_{i} results in ρ_{q}
- $A(i, j)=P$ means that P points in the $x y$-space lie on the line

$$
\rho_{\mathrm{j}}=\mathrm{x} \cos \theta_{\mathrm{j}}+y \sin \theta_{\mathrm{j}}
$$

- Find line candiates where $A(i, j)$ peaks above a threshold.

Hough transform - example 1
Hough transform - example 2

- Example 1: 11x11 image and its Hough transform:

- Example 2: 11x11 image and its Hough transform:

Hough transform - example 3

- Example 3: Natural scene and result of Sobel gradient magnitude followed by thresholding:

Hough transform - example 3

- Example 3: Accumulator matrix:

F3 05.09.16

Hough transform - example 3

- Example 3: Original image (left) and 20 most prominent lines superimposed on gradient magnitude image (right):

HT - advantages

- Advantages:
- Conceptually simple.
- Easy implementation.
- Handles missing and occluded data very gracefully.
- Can be adapted to several types of forms, not just lines.

HT - disadvantages

- Disadvantages:
- Computationally complex for objects with many parameters.
- Looks for only one single type of object.
- Length and position of a line segment cannot be determined.
- Co-linear line segments cannot be separated.
- Can be "fooled" by "apparent lines".
- Start and end of line segments found by post-processing

HT using the full gradient information

- Given a gradient magnitude image $g(x, y)$ containing a line.
- Simple algorithm:
for all $g\left(x_{i}, y_{i}\right)>T$ do
for all θ do
$\rho=x_{i} \cos \theta+y_{i} \sin \theta$
find indexes (m, n) corresponding to (ρ, θ) and increment $A(m, n$);
- Better algorithm if we have both
- The gradient magnitude $g(x, y)$
- And the gradient components g_{x} and g_{y}
- So we can compute gradient direction
- The new algorithm:
$\phi_{g}(x, y)=\arctan \left(\frac{g_{y}}{g_{x}}\right)$ for all $g\left(x_{i}, y_{i}\right)>T$ do
$\rho=x_{i} \cos \left(\phi_{g}(x, y)\right)+y_{i} \sin \left(\phi_{g}(x, y)\right)$
find indexes (m, n) corresponding to ($\rho, \phi_{g}(x, y)$), increment $A(m, n)$;

HT and line \& edge linking

Q: How can we look for lines with a certain orientation?

1. Obtain a thresholded edge image
2. Specify subdivisions in the $\rho \theta$-plane.
3. Examine the counts of the accumulator cells (A)
for high pixel concentrations (= length of line).
4. Examine the relationship (principally for continuity) between pixels corresponding to a chosen A-cell.

- Continuity here normally means distance between disconnected pixels.
- A gap in the line can be bridged if the length of the gap is less than a certain threshold.

Using edge linking

Hough transform for circles

- A circle in the $x y$-plane is given by

$$
\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}=r^{2}
$$

- So we have a 3D parameter space. What size, what resolution?
- A simple 3D accumulation procedure:
set all $A\left[x_{c}, y_{c}, r\right]=0$;
for every (x, y) where $g(x, y)>T$
for all x_{c}
for all y_{c}

$$
\begin{aligned}
& r=\operatorname{sqrt}\left(\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}\right) ; \\
& A\left[x_{c,} y_{c} r\right]=A\left[x_{c,} y_{c} r\right]+1 \text {; }
\end{aligned}
$$

- Better procedure(s)? 1 circle? Several circles?
- Applications ...

F3 05.09.16

Hough transform for ellipses

- A general ellipse in the $x y$-plane has 5 parameters:
- Position of center $\left(x_{c}, y_{c}\right)$, semi-axes (a, b), and orientation (θ).
- Thus, we have a 5D parameter space.
- For large images and full parameter resolution, straight forward HT may easily overwhelm your computer!
- Reducing accumulator dimensionality:
- Pick pixel pairs with opposite gradient directions
- Accumulate 2D histogram of mid-points of such pairs
- Peak histogram locations are center candidates.
- Reduces HT-accumulator from 5D to 3D.
- Disadvantage: Fails if there are lots of occlusions.

HT of a convex polygon

- A convex polygon is determined by its HT:
For (x, y) on s_{i-1}
$t_{i-1}=x \cos \left(\theta_{i-1}\right)+y \sin \left(\theta_{i-1}\right)$
For (x, y) on s_{i}
$t_{i}=x \cos \left(\theta_{i}\right)+y \sin \left(\theta_{i}\right)$

- Each vertex belongs to exactly two sides.
- Given the HT peaks of these two sides, we can write

$$
\left[\begin{array}{c}
t_{i-1} \\
t_{i}
\end{array}\right]=\left[\begin{array}{cc}
\cos \left(\theta_{i-1}\right) & \sin \left(\theta_{i-1}\right) \\
\cos \left(\theta_{i}\right) & \sin \left(\theta_{i}\right)
\end{array}\right]\left[\begin{array}{l}
x_{i} \\
y_{i}
\end{array}\right]
$$

- Which can be solved for the vertex $\mathrm{v}_{\mathrm{i}}=\left[\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right]^{\top}$
- Given $0 \leq \theta_{1}<\theta_{2} \ldots<\theta_{N} \leq 2 \pi$, we can solve for every vertex, and reconstruct the polygon from the NHT -peaks.

Hough transform for ellipses

- Reducing accumulator dimensionality (2):
- Pick pixel pair (P,Q) with non-parallel tangents.
- Tangents intersect at a point T.
- Let M be mid-point of PQ.
- Line TM goes through ellipse center.
- Accumulate 2D histogram of mid-points of such pairs
- Peak histogram locations are center candidates.
- Reduces HT-accumulator from 5D to 3D.
- Using other tricks ...

Hough transform - exercise 1

- Familiarize with Matlab function for line detection:
- Functions hough(), houghpeaks(), and houghlines()
- Next exercise:
- Test Hough transform for equal size circles on the coins image.

Hough transform - exercise 2

Next exercise: The randomized line-detection Hough transform.

- Simple idea (line case):
- From the edge image, pick two points.
- Find the ρ and θ corresponding to this set of points.
- Increment the indicated (ρ, θ) cell.
- Once a cell reaches a certain (low) count, assume that an edge is present in the image.
- Verify this.
- If truly present:
- Store line parameters
- Erase this line from the edge image
- Continue until no more points or until the number of iterations between two detections is too high.
- Orders of magnitude faster than the ordinary transform.

