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Abstract
In recent years, a new technology, allowing the measurements of the expression of thousands of genes simultaneously, has
emerged in medicine. This method, called DNA microarray analysis, is today one of the most promising method in functional
genomics. Fundamental patterns in gene expression are extracted by several clustering methods like: hierarchical clustering,
self organizing maps and support vector machines. Changes in gene expression, as a response to changing environment
conditions, diseases, drug treatment or chemotherapy medications, can be detected allowing insights into the dynamic of the
genome. Microarrays seem to be an important tool for diagnosis of diseases at a molecular level. Applications are for example
the improvement of diagnosis and treatment of cancer and the improvement of the effectiveness of drug treatment. In this
introductory paper, we present the principles of DNA microarray experiments, selected clustering methods for gene
expression analysis and the impact to clinical research.

Keywords: DNA microarray, gene expression, hierarchical clustering, self organizing maps, support vector machine, B-cell
lymphoma

Introduction

Nucleic acids (DNA, RNA) are the hereditary

components of life and constitute the genom. DNA

(deoxyribonucleotid acid) is a double-stranded poly-

mer of four nucleotides: adenine, cytosine, thymine

and guanine (Figure 1). The two strands interact

together by hydrogen bonds between pairs of

nucleotides. The information needed for protein

biosyntheses is determined by the genetic code and

is inherent through replication. Proteins are used by

the cell to read and translate the genomic information

into other proteins for performing and controlling

cellular processes: metabolism (degradation and

biosynthesis of molecules), physiological signalling,

energy storage and conversion, formation of cellular

structures.

Proteins are synthesized from the genetic code by

intermediate of mRNA (messenger RNA). An RNA

(ribonucleotid acid) molecule is single-stranded and

can pair with DNA. RNA contains the same

nucleotides as DNA with the exception that thymine

is exchanged with uracil A distinct DNA sequence

which codes for particular protein or more precisely

for a functional or structural RNA is called a gene.

Each gene carries the information needed for one or

more proteins performing a specific task in a cell.

To retrieve the encoded information in a gene the cells

use the process of gene expression. This process

consists of two steps (Figure 2). During the first

step (called transcription) the DNA sequence of

the gene is copied into mRNA. This mRNA serves in

the second step (called translation) as template for the

protein biosyntheses. A gene is said to be expressed in

a cell if its corresponding mRNA is present in the cell.

The amount of mRNA at a given time point in the

cytoplasm of cell serves as measure for the expression

level. Or in other words, the expression level reflects

the activity of a specific gene and therefore the amount

of the related protein needed by the cell. The complete

collection of all transcripts in a cell at a given state of

development is called transcryptome. By comparing
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the transcriptomes isolated from cells at different time

points with a reference transcriptome, changes in the

transcriptome levels for every gene in the genome are

detected.

Insight into the functional behaviour of the genome

can be obtained by determining which genes are

induced or repressed in response to a step of the cell

cycle, a development phase, or a response to the

environment, such as treatments with drugs. Genes

with similar expression behaviour under same

conditions are likely to have a related function. DNA

microarrays allow it to measure simultaneously the

level of expression for every gene in a genome.

Multiarray plates and microchip assays are used to

screen hundred or thousands of gene fragments in one

assay. Therefore, DNA microarrays provide insights

into the dynamics of a genome or genomic shift in

metabolism. This is known as functional genomics.

Gene expression analysis is part of a new interdisci-

plinary discipline between information science and

molecular biology, known as bioinformatics [1–4].

For didactic purposes, the principles of the

microarray technique is illustrated by the metabolic

shift of yeast (Saccharomyces cerevisiae) from anaerobic

fermentation to aerobic oxidation. First yeast is

growing in a media with sufficient glucose which is

fermented into ethanol. After all the glucose has been

used, the yeast cells switch from fermentation to the

decomposition of the ethanol into other products (like

glycogen) by use of oxygen. The 6200 genes of the

yeast genome are amplified by polymerase chain

reaction (PCR: a method in molecular biology to

selectively amplify small amounts of DNA of given

length and sequence). The PCR results are then

purified and put on a glass slide. The spotted DNA is

denatured (single-stranded) and linked with covalent

bonds to the glass slide (these are the so called

probes). First cell where a gene is expressed must be

found. This is done by finding the corresponding

mRNA. Cytoplasmic concentrations of mRNA are

good indicators for gene expression. The DNA

sequence is obtained by enzyme reverse transcriptase,

which produces a DNA sequence out of the mRNA

(complementary DNA or cDNA represents the

coding sequence of a gene including flanking regions).

By a systematic arranging on the glass slide, a

particular sequence (or a gene) can be identified by the

location of the spot on the slide (Figure 3). At different

time steps mRNA is isolated from the cell population

and converted into cDNA (the so called targets). The

nucleotides, which are used for the synthesis of the

cDNA include either a green Cyanine fluorescent dye

(called Cy3) or a red dye (called Cy5). Therefore the

corresponding cDNAs are labelled green or red.

Usually, the reference cDNA is labelled with Cy3

fluorescent dye and the test cDNA with Cy5

fluorescent dye. In the case of the yeast population,

the cDNA produced during the anaerobic fermenta-

tion (the reference sample) is labelled green and the

cDNA from the aerobic oxidation (the test sample) is

labelled red. The sets of cDNA from two different

samples (green and red) are mixed together

and incubated with the single-stranded DNA on the

microarray. The cDNAswill hybridswith the respective

complementary DNA strand (which represent its

corresponding gene). After incubation time the

Figure 1. DNA is a double-helical polymer. The two halves of the

DNA helix serve as template for replication and contain the

information needed for protein syntheses. The polymer chain is

composed of four nucleotides: adenine (A), thymine (T), guanine

(G) and cytosine (C). The DNA code consists of patterns build

up from these nucleotides. The two strands are connected by

interacting base pairs (A–T and G–C). The visualization was

performed by use of an atomic coordinate file from the PDB

database.
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cDNAs that did not bind to any spot are washed off.

Then, the location and intensities of the fluorescent

dyes are recorded with a scanner. The scanner consists

of lasers with different wave length and a sensor. The

slide is scanned twice, first with green laser light

(532 nm) that excites the Cy3 fluorescent dye and than

with red laser light (635 nm) exciting the Cy5 dye. The

dyes emit characteristic fluorescent radiation which is

measured by the detector. From the scanning process

result two digital monochrome images from the micro-

array, one for the green dyes and one for the red dyes.

The measured fluorescence intensity for any spot is

proportional to the amount of mRNA in the probe.

Mostly, the ratios (Cy5/Cy3), providing a measure for

the relative intensities, are used for the analysis of

gene expression. To visualize the relative gene

expression the two images are pseudo-coloured and

merged to a ratio image of the microarray. A red spot

indicates that a gene produces more mRNA in the test

probe than in the reference probe (Figure 4). Than,

the gene activity is induced in the test probe. A green

spot indicates that the gene has a lower activity in the

test sample than in the reference sample. The gene

activity is repressed in the test sample. A yellow spot

(equal intensity of green and red label) indicates that

there is no change in the gene activity level in the two

samples. (Black represents spots where no cDNA has

bound to the single-stranded DNA of the gene). If the

test samples are taken at different successive time

steps, the behaviour of the genes under different

conditions can be studied (Figure 5). The repression

and induction of the activities of the genes give

insights into the dynamic behaviour of the cell at the

molecular level.

Fundamental patterns in gene expression are

extracted by clustering methods. These processes

organize the genes into biological relevant clusters

with similar expression patterns. The analysis of the

gene expression data provides three distinct results:

(1) If new detected genes with previously unknown

functions are clustering repeatedly with genes of

known function, the function of the new genes

can be predicted.

(2) Genes in a common cluster often contain

conserved promoter (site on the gene for the

transcription initiation and direct binding of the

RNA polymerase) sequence motivs.

(3) Clustered gene expressions may be components

of genomic circuits that work together and

perform a single task.

Microarrays are today one of the most promising

method in functional genomics. This technique offers

us the possibility to determine thousands of expression

values in hundreds of different conditions [5–10]. For

example, the differences in gene expression profiles in

a normal and a cancer cell. A well studied eukaryotic

organism is yeast. Yeast as a model organism is so

important because yeast cells and human cells have

many genes for fundamental biological processes in

common. Most of the cell-signalling systems are the

same in both cells. Because mitosis is almost identical,

yeast plays an important role in cancer research. A lot

of microarray data sets are provided by the Stanford

Microarray Database [11]. The data base stores raw

and normalized data from microarray experiments

and the microarray image files (Figure 6). The data are

Figure 2. The genetic code in parts of the DNA, the genes, serves as construction plan for proteins. During gene expression a mRNA copy is

made from the gene on the DNA. The mRNA is transported from the cell nucleus to the ribosomes in the cell cytoplasm where it serves as

template for protein syntheses.
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available via Internet (http://genome-www.stanford.

edu/microarray/). Microarray experiments are large

scale experiments and needs an extensive study

design. Several preliminary steps are needed to

enable a reliable analysis and interpretation of the

expression levels.

Microarray experiments

Biological and medical conclusions and predictions

resulting from microarray data depend from the

experimental design of the array and the reliability of

the output data. Therefore prior to the gene

expression analysis several procedures including the

printing technique of the microarray slides, the use of

replicates, the data pre-processing and normalization

are necessary [12].

Microarray slides

Microrrays consist of glass slides containing DNA

spots in a high density. In principle, three different

techniques are used to produce microarrays, where

two techniques are based on the mechanical depo-

sition of external synthesized DNA probes (PCR

products) on the glass slide and with the third method

the probes are synthesized directly on the slide:

1. Microspotting: The DNA probes are spotted by a

robot onto the glass slide via a micro capillary and

linked by covalent bonds to the glass slide.

2. Microspraying: The DNA probes are sprayed

(touch free) on the slide by inkjet printing.

3. In situ arrays: The DNA probes are synthesized

directly on the glass slide with the use of

photolithographic techniques.

Figure 3. In a microarray experiment, first parts of single-stranded DNA (e.g. genes) are bounded in an array on a glass slide. They serve as

probes. During gene expression a certain amount of mRNA occurs in cell cytoplasm. The functional behaviour of cells are studied under

different conditions. In the begin reference mRNA is extracted from the cells. Then, for example after a metabolic shift due to changing

conditions, mRNA is isolated from the cell population at successive time steps (test samples). The mRNA from both samples (reference and

test) are converted into cDNA, labelled with different fluorescent dyes and mixed together. Then they are incubated with the single-stranded

DNA on the microarray. The different cDNA hybride with the respective complementary DNA parts and the colours indicate different states

of gene expression. Available in colour online.
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In this paper, we will concentrate our attention on

spotted microarrays, which is based on a competitive

hybridization of two mRNA samples with two

different dye labels. A microarray slide may consists

of 4 £ 4 sectors, each containing 399 probes. That

makes together 6.384 probes per array. Spotted

microarrays allow a great flexibility in the choice of

the array elements, especially for customized arrays for

special investigations.

To get more statistically meaningful interpretation

of the results, replication is necessary.

Replicates

To guarantee reliable and reproducible results different

variations (random and systematic) that occur in every

microarray experiment must be taken into account

[13,14]. Replicates allow averaging and reduce

variability in the summary statistics. The additional

data from the replicates can be analyzed with statistical

methods allowing an evaluation of the slide quality and

the estimation of the variance between slides. The

onset of the replicates is a very important step in the

design of microarray experiments. There are two

forms: biological and technical replicates.

Random variations occur from biological variability

inside a population. Biological replicates, where

mRNA samples are taken from independent biological

sources, allow averaging which reduce the variability

and enable more independent experimental results.

Technical replicates are used to reduce variability

introduced by measurement errors. Technical repli-

cates can be realized by multiple hybridizations from

the same sample. They are used to evaluate the

technical artefacts resulting from: scanner settings,

reagents, robotic printing process etc.

The technical realization and hybridization is just

one step in a pipeline consisting of: pre-processing,

normalization, data analysis and data interpretation.

The next point is the pre-processing of microarray

data.

Pre-processing of microarray data

To eliminate potential sources of error at the

beginning a pre-processing of the microarray data is

necessary [15]. First, spots with insufficient quality

must be removed from the data set. These are spots

showing either a very low expression value (which

cannot be sufficiently distinguished from background)

or saturated spots (which cannot provide a reliable

intensity measurement). Second, to improve the

accuracy of the measured values a background

correction is necessary. The fluorescence of the

background material is generally added to the spot

intensity during the scanning process. To determine

the true intensity value of the spot, the background

intensity must be removed. This can be done by

Figure 4. Scan of a micoarray. This part of a larger array illustrates

one time point of a DNA microarray experiment where the gene

expression in fibroblast cells was measured (fibroblast cells

differentiate to different kinds of connective tissue cells and are

involved in wound repair). Green dye was used for the cDNA

extracted from the reference cells and red dye was used for the

fibroblast cells at a given time point after stimulation with serum. Red

spots indicate induced genes, green spots indicate repressed genes

and yellow spots indicate no change. Available in colour online.

Figure 5. Microarray experiments enable the study of the gene

expression of a cell under different conditions. The repression and

induction of the activities of the genes during the changing

conditions can be followed up. In our example, a metabolic shift of

the yeast cells from anaerobic fermentation to aerobic oxidation

occurs when the glucose concentration diminish. This is reflected by

changing gene activity.
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subtraction of the background intensity from the

expression intensity.

The raw data from a microarray after the scanning

process consist of pairs of image files (one for each

dye). Automatic analysis systems are used for the

extraction of the red and green intensities for each spot

on the array. First, the location of the spot centres

must be detected. Spots usually vary in size and shape.

Therefore segmentation is needed to determine which

pixel on the array image belongs to the spot

(foreground) or to the background. Than for each

spot on the array and each dye, beside spot and

background intensities, quality measures are

extracted. The spot quality is defined by: brightness,

uniformity and the area. The quality can be related to

the standard deviation of the pixels of the spot,

filtering out those spots for which the standard

deviation is to big or if the values for mean and

median are to different.

But before an analysis of the gene expression levels

can be done, several systematic variations of the

measured levels must be removed. The removing

concerns all the non-biological variations introduced

in the measurements. This task refers to the

process of normalization, making microarray data

comparable.

Normalization

Normalization is necessary for within and between

slides comparisons [16]. The need for normalization

can be shown with self–self hybridizations where the

same mRNA probes are labelled with Cy3 and Cy5

dyes. The scatter plot shows an imbalance of green

and red intensity values. The green intensities tend to

be higher then the red ones. The dye effect results

from different properties of the two dyes such as: lower

incorporation rate of Cy5, the quantum yield and the

Figure 6. Access to microarray data (microarray dataset from Stanford University) is possible via the Stanford Genomic Resources

homepage: http://genome-www.stanford.edu. For the following illustrations, we choose an array dataset from fibroblasts response by

stimulation with a serum. Fibroblasts are cells playing a role in wound repair.
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photobleaching. Normalization should be used to

correct the dye-imbalance. Normalization is used in

different ways: within-slide normalization and

between slides normalization.

Within-slide normalization. First, each of the slides

must be normalized separately before normalization

between slides can be done. Within-slide

normalization can be regarded as correction of the

dye effect. The simplest normalization method (global

normalization) is based on the assumption that the

red–green imbalance is constant for all spots of the

array. Then Cy3 and Cy5 are related by a constant

factor. Correction of the ratios is done by simply

subtracting a constant in that way, that the mean of the

log-ratios is zero. In the global normalization approach

is assumed that the correction parameter is constant

across the whole intensity range. The experience

shows however that the dye effect is intensity

dependent. Locally weighted linear regression can be

used to remove such intensity dependent bias by

subtraction with (intensity dependent) values of an

estimated function.

Another method to normalize within-slides is the

paired slide normalization with dye swap. A dye

swap pair consists of two slides, where hybridization is

done twice with reverse dye assignment. Then, by

assuming that the dye effects for the two slides are

similar, normalization is done by combining the log-

ratios of the two slides.

Between-slides normalization. After within-slide

normalization, the single slides contain log-ratios

with values centred around zero. Between slides there

are often scale differences due to changes in scanner

settings or similar influences. Therefore, after within-

slide normalization the log-ratios of a series of slides

must be scaled to provide comparable values across

different biological conditions.

Representation of expression data

Expression matrix. After normalization the data are

typically reported as expression ratios. Let us say that

N genes are simultaneously probed on a microarray.

Further, let us assume that we have a series of M

arrays, each representing one experimental condition

(sample of mRNA at a given time step). Out from the

data on the microarray plates, a matrix is constructed

where the genes are arranged in rows and the

expression values for each experimental condition

are listed in columns (Figure 7). Then the vector of the

ith row in the matrix describes the expression values

of the ith gene during the M time steps where the

samples are taken.

X ¼ ðxijÞ

If the expression values are represented as simple

ratios then the values of the over expressed genes are

lying in the range (1 , xij , þ1) and the under

expressed genes are represented by the range

(0 # xij , 1). To overcome this discrepancy with

different range lengths the logarithm of the ratios is

taken.

xij ¼ log
ðCy5Þij

ðCy3Þij

� �

(Cy5)ij, Red fluorescence value of gene i in the sample

j; (Cy3)ij, Green fluorescence value of gene i in the

sample j.

Then, the over expressed genes are assigned to

positive values and the under expressed genes to

negative values, where equal changes are of equal

magnitudes (with opposite direction). Gene

expression at a constant level is represented by zero.

Visualization. To visualize the primary data of the

expression matrix, the numerical ratios are

represented by a colour that reflects qualitatively and

quantitatively the experimental observation. This

enables to explore the data in an intuitive manner.

The table for the pseudo-colour ranges from green to

red. If a gene was induced at a given time point it is

represented by the red colour. The greater the

induction, the brighter is the red colour. If a gene is

repressed the value is represented by the green range.

Values with logarithmic ratios close to zero are

coloured black. The relative intensities represent

relative expressions for each gene at a given time

point (experiment) in the expression matrix, where

brighter elements are highly differently expressed.

If the genes are related, the expression progression

along different time steps and conditions can be

plotted (progression plot). This makes of course only

sense after clustering when the progressions of the

genes in a single cluster are plotted. If the expression

patterns of many genes are plotted simultaneously, the

presentation of general and common patterns

becomes difficult. Overall, properties can be visualized

by plotting the mean and standard deviation of all

genes in the cluster.

Gene expression analysis

Data analysis means the identification and clustering

of common patterns of gene expression. The patterns

allow conclusions about the common behaviour of

genes under different conditions (cell cycle, different

development phases, or a response to treatments with

DNA microarray analysis 277



drugs etc.). Goal is the detection of similarities or

differences [17]. The expression matrix can be studied

by either comparing rows or columns. The rows or

columns of the expression matrix can be considered as

vectors.

yi ¼ ðxi1; . . . ; xiMÞ i ¼ 1; . . . ;N

Similarities between rows possibly result from co-

regulation of genes. These genes can be functionally

regulated. Comparison of columns (experiments)

provides insights into the behaviour of the whole

gene set I under different conditions.

I ¼ {y1; . . . ; yN}

Detection of differentially expressed genes allows it

to study the response of various compounds to the

investigated conditions (for example: cell lines of

tumour samples).

Data adjustment

Prior to any data analysis some data adjustments are

necessary. To enable a better detection of relation-

ships, the data vectors (rows in the data matrix) must

be rescaled. One procedure is the subtraction of the

mean value (along a row) from each data element.

y 0
i ¼ yi 2 �yi with : �yi ¼

1

M

XM
j¼1

xij

After this rescaling the expression values of each

gene reflect the variation from the mean value. This is

a kind of standardization where the mean of each row

will be zero. This allows it to remove certain types of

bias (resulting from multiplying the data elements of

all the genes by a fixed value).

y 0
i ¼

yi

si

with : si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M 2 1

XM
j¼1

ðxij 2 �yiÞ
2

vuut

Additionally, to amplify weak expression signals and

to suppress strong signals, the values of the data

vectors are divided by their respective standard

deviation.

Similarity and distance measures

To enable a comparison of gene expression patterns,

first a measure for the similarity between the

expression data must be defined.

d : I £ I ! R

Figure 7. The results from the microarray slides are reported as gene expression matrix. The series of microarrays probe the expression levels

of the fibroblast cells in different samples. In the expression matrix, the genes are arranged in the rows and the columns represent the

expression values at different time points.
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where the coefficients are satisfying the conditions:

dnn ¼ 0 and dnm $ 0

dnm ¼ dmn

The similarity measure is computed by summing

up the distances between the respective vector

elements [18]. With such similarity measures, the

problem of finding common expression pattern

reduces to a pair-wise linear comparison of the data

vectors. Representations from a great variety of such

measures are the Euclidian distance and the Pearson

correlation coefficient.

Euclidian distance:

dnm ¼ kyn 2 ymk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
j¼1

ðxnj 2 xmjÞ
2

vuut

Pearson correlation coefficient:

pnm ¼

PM
j¼1 ðxnj 2 �ynÞðxmj 2 �ymÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM

j¼1 ðxnj 2 �ynÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1 ðxmj 2 �ymÞ

2
q

This allows the calculation of a distance (or

similarity) matrix, which is the input for the clustering

algorithms. More sophisticated approaches are Spear-

man Rank-Order correlation, Kendall’s Tau and

Mutual Information.

Clustering methods

Clustering is the task of separating a set of data into

several subsets due to similarities. The aim is to find a

partition P in which the data vectors in the same

cluster Ci are similar to each other and dissimilar to

the data vectors in the other clusters Cj.

P ¼ {C1; . . . ;Cg}

where the classes Cl ¼ { . . . ; yk; yh; . . . } are satisfying

the following conditions:

i)
Sg

k¼1 Ck ¼ I

ii) Ci > Cj ¼ B with: i – j

Generally, there exist several possibilities for the

partitioning of a set of N data vectors into g disjoint

clusters. Therefore from the set G* of all possible

partitions, the optimal partition P̂ satisfying to the best

the quality criteria h:

h : G* ! R with : hðP̂Þ ¼ max
P[G

*
ðhðPÞÞ

is selected. The goal is to find clusters that minimize

intracluster variability while maximizing intercluster

distances. This can, as an example, be realized with

the following quality criteria:

hðPÞ ¼
Xg
k¼1

X
n;m[Ck

dnm ! min
P[G

*
where : dnm

¼ kyn 2 ymk

The motivation to find clusters is driven by the

assumption that genes showing similar expression

patterns have common functions, common regulatory

elements or common cellular origin [19,20].

Two clustering strategies are possible: unsupervised

and supervised. Unsupervised methods allow the

analysis of the gene expression data set without an a

priori knowledge or input. Supervised methods

determine expression patterns that fit a predetermined

pattern resulting from a previous training.

For the following illustrations, we choose a

microarray dataset from the Stanford Genomic

Resources at the Stanford University. The dataset

results from fibroblasts response by stimulation with a

serum [21]. Fibroblasts are cells playing a role in

wound repair. The clustering operations were per-

formed with the Gene Expression Similarity Investi-

gation Suit (GENESIS) software [20]. The program

runs on a PC with Microsoft Windows.

Unsupervised methods

As representatives algorithms for gene expression

analysis we present hierarchical clustering and self

organizing maps. These are the most popular methods

in finding trends in gene expression data.

Hierarchical clustering. Hierarchical methods produce

nested clusters, where small clusters are nested inside

larger ones [22]. The clusters are showing different

levels of detail, depending on the actually considered

partition P n of clusters Cl.

P n ¼ {C1; . . . ;Cg}

First the distance matrix, containing the distances

between all data vectors is calculated. The hierarchical

cluster algorithm can be formulated as follow

(agglomerative procedure):

Step 1: Every data vector represents at the

beginning one cluster:

P 0 ¼ {{y1}; . . . ; {yN}}

Step 2: Find the two clusters Ck;Cl [ P n21 with

minimum distance defined by the linkage rule.

hn ¼ min
Ck;Cl[P n21

k–l

DðCk;ClÞ
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Step 3: Merge the two clusters

Ct ¼ Ck < Cl with Ct [ P n

Step 4: Repeat steps 2 and 3 until the total number

of clusters is one.

P n ¼ {I}

A common linkage rule is the single linkage, where

the distance between two clusters is defined by the two

closest data vectors (nearest neighbour) in the

different clusters.

DðCk;ClÞ ¼ min
n[Ck
m[Cl

ðdnmÞ

The distance may be defined as the Euclidian

distance. The value hy is called the index of the

hierarchy (stands for the hierarchical level) and

satisfies the condition:

0 ¼ h0 # h1 # h2 # · · ·

The hierarchical clustering produces a represen-

tation of the data as a dendrogram (tree structure),

where similar expression patterns are nested in a

hierarchy of sub clusters (Figure 8). Hierarchical

clustering is a commonly used procedure for gene

expression analysis. A great advantage is that only a

few parameter (linkage rule and distance measure)

need to be specified. The result is a reordering of the

genes, where genes with similar behaviour are close to

each other in the tree structure. The different classes

must be determined by the user by selecting sub trees

from the dendrogram (generally to this purpose

information not resulting from classification pro-

cedure is necessary). Other linkage rules which are

commonly used are: complete linkage (distance

between two clusters is defined by the two data

vectors with the greatest distance) and average linkage

(distance between two clusters is defined by the

distance of the mean data vectors).

Self organizing maps. Self organizing maps are

partitioning algorithms which project high

dimensional data into clusters on a low

dimensional regular grid [23,24]. Clusters that are

similar to one other appear in adjacent cells of the

grid. The self organizing map algorithm is based on

competitive learning where the training is completely

data driven.

A self organizing map is formed by points located on

a regular (1 or 2 dimensional) grid. Each point on the

grid is represented by an M-dimensional weight vector

ml where M is the dimension of the input vectors.

ml ¼ ðmi1; . . . ;miMÞ

The number of points on the grid represents the

number of expected clusters. Prior to the training

phase the weight vectors are initialized. This can be

done by choosing random sample data vectors from

Figure 8. Left side: Dendrogram representation of hierarchical clustering. The dendrogram is a tree like representation in which each cluster

is nested into the next cluster (similar clusters are fused into the next level cluster). On the right side, two progression plots of gene expression

values inside two different clusters are shown. The progression is shown along different time steps from the beginning of serum stimulation.

Top: the genes in the upper common cluster are repeatedly under expressed. Bottom: The genes are over expressed. Additionally, the mean

expression value is shown.
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the training set. In each training step, the distance

between a randomly chosen sample data vector and all

the weight vectors is determined. The point mc whose

weight vector has the minimum distance to the sample

data vector yi is selected as best matching unit.

kyi 2mck ¼ min
l
ðkyi 2mlkÞ

After the determination of the best matching unit, the

weight vector of the unit and its topological neighbour

are update (Figure 9). This update (at step t) provides

that the vectors are moving closer to the sample

vector.

mjðt þ 1Þ ¼ mjðtÞ þ hcjðtÞ½ yi 2mjðtÞ�

The neighbours of the best matching unit are defined

by the neighbourhood function. Only the weight

vectors in that area around the best matching unit are

updated in one step. This enables it that similar

clusters are moving step by step together and finally

are lying near each other on the map. The neighbour-

hood function is defined by:

hciðtÞ ¼ aðtÞhðkrc 2 rjk; tÞ

where a(t) is the learning function and rj the location

on the grid. The function hðkrc 2 rjk; tÞ can be realized

as Gaussian function, where the different neighbours

are considered by different weights, depending on

their distance from the best matching unit.

The algorithm can be formulated as follow:

Step 1: Choose the number of columns (q1) and the

number of rows (q2) on the grid. The predefined

number of clusters is then K ¼ q1q2.

Step 2: Define the learning function a and the

neighbourhood function h(d).

Step 3: Initialize the weight vectors mj with

j [ ð1; . . . ; q1Þ £ ð1; . . . ; q2Þ.

Step 4: Loop over the entire data set

a. Loop over every data vector yi
a.1. Find the weight vector mc with the

minimum distance to yi

k yi 2mck ¼ min
l
ðkyi 2mlkÞ

a.2. Identify the set Nc of neighbour weight

vectors mc

Nc ¼ {mnj krn 2 rck # d}

a.3. Update every neighbour weight vector

from Nc:

m0
n ˆmn þ aðmn 2 yiÞ

b. Decrease the values of a und d by a

predetermined amount.

The algorithm maps the sample vectors into the

Voronoi regions where each corresponds to one unit

on the grid. Than the data vectors are clustered

according to:

V l ¼ {yi kml 2 yik , kmk 2 yik; l – kj }

Each Voronoi region is one cluster consisting of similar

gene expression data (Figure 9). The clustering

structure of a self organizing map can be visualized

by displaying distances between vectors. Similar

clusters are lying near each other on the map.

Self organizing maps need a previous definition of

the grid points and therefore the number of expected

clusters. By decreasing the number of grid points,

clusters with greater variability of their members are

achieved. If no neighbour points of the grid point are

considered, that means if there is no linkage between

neighbouring points on the grid, than the process

reduces to a k-means type of clustering.

Figure 9. Representation of a self organizing map with 9 clusters. Left: A self organizing map is formed by points located on a regular grid,

where each point is represented by a weight vector. The number of points on the grid represents the number of expected clusters. Prior to the

training phase the weight vectors are initialized. In each training step, the distance between a randomly chosen sample data vector and all the

weight vectors is determined. The point mc whose weight vector has the minimum distance to the sample vector is selected as best matching

unit. Then the best matching unit and its neighbours are updated and move towards the sample data vector. Right: The maximum distance

between the weight vector of a unit and its cluster vectors is coded in grey levels. The greatest cluster size is coded in black, the smallest in

white.

DNA microarray analysis 281



Supervised methods

The above discussed clustering methods attempt to

classify expression patterns in an unsupervised

fashion. Supervised methods needs a previous learn-

ing procedure with a teacher signal. As a representa-

tives algorithm for gene expression analysis we present

the support vector machine.

Support vector machine. The support vector machine is

a binary classification method to discriminate two

different data sets [25–27]. Support vector machines

use a training set to specify in advance, which data

vectors should cluster together. In microarray analysis,

a set of genes showing a distinct expression pattern is

selected. These genes may be part of a common

pathway. Additionally, a second set of genes that show a

different expression pattern is selected. These two sets

are used as training set and the support vector machine

is trained to discriminate between the members and

non-members of the given functional set. The two sets

are labelled with (þ) and (2). In the following, we

restrict the discussion to linear separable cases.

In principle, the support vector machine tries to find

a hyperplane, which separates the two classes in the

training set:

wyþ b ¼ 0

w is the normal vector of the hyperplane and y are the

data vectors on the hyperplane with the dot product

wy. Additionally, the support vector machine tries to

maximize the margin of the hyperplane. The margin of

the hyperplane is the sum of the distances of the

nearest vectors on both sides (Figure 10). Than the

problem is to find a pair of hyperplanes in that way

that the two classes of the training set must satisfy the

conditions:

H1 : wyk þ b $ 1

for the set of data vectors yk with label ðþÞ

H2 : wyl þ b # 21

for the set of data vectors yl with label ð2Þ

The two hyperplanes are parallel and no data vectors

of the training set are laying between the two

hyperplanes (for linear non separable cases the

constraints on the two hyperplanes can be relaxed,

so called soft margin). The data vectors lying on the

two hyperplanes:

H1 : wys þ b ¼ 1 H2 : wys þ b ¼ 21

are called support vectors. The margin is then

determined by this pair of parallel hyperplanes. The

perpendicular distances d1 and d2 of H1 and H2 from

the origin come to:

d1 ¼
j1 2 bj

kwk
and d2 ¼

j2 1 2 bj

kwk

Then the amount of the margin is calculated as:

M ¼
2

kwk

The principle of the support vector machine algorithm

is then to minimize kwk2 subject to the constraint:

tiðwyi þ bÞ2 1 $ 0 with ti ¼ 1 for H1 and ti

¼ 21 for H2

where the two hyperplane inequality equations are

combined into one. If it is not possible to find a

hyperplane, separating the two sets, the support vector

machine can be generalized to a non linear support

vector machine where a hyperplane can be found in a

higher dimensional space. The crucial point is that the

data vectors appear in the optimization problem as dot

product, so it is not necessary to formulate the higher

dimensional space explicitly.

After the hyperplane with optimal margin is

determined in the training phase, the support vector

machine can recognize unknown genes and classify

them as members or non-members on hand of their

expression pattern.

Figure 10. Principle of the support vector machine. The algorithm

tries to find a hyperplane H, which separates the two classes of data

vectors in the training set. Additionally, the support vector machine

maximizes the amount of the margin M of the hyperplane, defined

by the sum of the distances of the nearest data vectors on both sides.

The data vectors lying on the two parallel hyperplanes (H1 and H2)

are called support vectors.
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Post clustering analysis

The clustered microarray data provide the infor-

mation needed to make testable predictions. Addition-

ally to the gene expression pattern, sequence and

annotation information contained in gene databases

can be used for further analysis.

The relationships among genes are used to analyse

there role in transcription regulation or in metabolic

processes. The genome contains, beside coding

sequences, regulatory regions that control gene

expression. Clustering known genes and unknown

genes with similar expression patterns, lead to the

predictions of possible functions of the unknown

genes. This “guilt by association” method reveals two

possibilities: either the genes are involved in the same

cellular process or the genes are induced by a common

transcription factor. Than the promoter regions of the

clustered genes are examined and possible conserved

sequences detected. By searching for these sequences

on the genome it is possible to identify the

transcription factor binding sites responsible for the

regulation of these clustered genes.

Beside promoter analysis the gene expression data

are used for the mapping onto the chromosomes or

biological pathways. Consecutive genes are often

similar expressed (due to a common regulatory

network) and can be easily identified. High expression

and correlation values of certain genes can provide

information about abnormal amount of chromosomal

material in a cell (aneuploidy). Further genetic

networks (for example: Bayesian networks), developed

out of the microarray data can help detecting

interaction between genes.

Protein biosynthesis

Goal of the gene expression is the biosynthesis of

proteins. The amino acid sequences are assembled on

the ribosome during the translation process by use of

mRNA as a template (Figure 2). Twenty different

amino acids are involved as elements in protein

sequences, where each is coded by a triple of

nucleotides on the mRNA. Once an amino acid

sequence is synthesized it folds together to a well

defined and for its sequence unique 3D structure. It

can be differentiated between the primary structure

(the sequence of the residues), the secondary structure

(a-helices, b-sheets and loops) and the tertiary

structure (folding of the secondary structure elements

into a three dimensional structure).

Functional specificity of a protein is linked to its

structure. Due to the folding the residues, which are

responsible for the protein function, are brought into a

precise geometric arrangement. The interactions

between proteins within the organism result in

metabolism, reproduction and form. Some proteins,

like hormones, induce the expression of genes

(Figure 11), while others are directly involved in the

initiation and transcription processes (Figure 12).

Protein structures are determined experimentally

by crystallographic methods and are deposited into

the protein database (PDB), an international reposi-

tory for structure files [28]. At the moment PDB

(http://www.rcsb.org/pdb) contains more than 35,000

known protein structures. A PDB data file contains

the coordinates of all the atoms of the proteins and is

used as input for protein visualization. In this paper,

we used the Swiss-Pdb Viewer for the visualization of

DNA and proteins [29].

Genetic networks and reverse engineering

The synthesis of proteins is complicated and emphasis

different tasks like: transcription controlling, RNA

splicing, transport of mRNA, translation controlling,

posttranslational modifications and degradation of

protein products. Because in DNA microarray

experiments only gene expressions (or more precise

the production of mRNA) are measured, the model-

ling of cellular processes reduces to the modelling of

transcription processes.

Processes inside cells are described as networks of

gene products like mRNA and proteins. A genetic

network describes the reciprocal regulation

(Figure 11) of the involved genes. The interactions

result from the expression of a gene and the activation

of other genes by the produced protein (Figure 12).

The state of a cell at a given time step is defined by its

gene expression level which determines the behaviour

of the cell (at the molecular level) at the next time

step. In other words, the temporal changes of gene

expression levels are modelled.

By reverse engineering a genetic network is estimated

from the experimental data. A collection of data may

results from the measurements of gene expression levels

at different time steps (reflecting for example the

temporaldevelopmentof a cell or its response reaction to

the stimulation with drugs). The results at a given time

step describe the gene expression level and therefore the

state of the cell at this time point. Then, the values of the

gene expression levels at the next time step should be

determined by the rules and parameters of the network.

The genetic networks are based on the assumption

that every gene has a regulative influence on the other

genes and this influence can be estimated by different

weighting factors. The values of such weighting factors

are positive in the case of a stimulating influence, zero

if a gene is not influenced by other genes and negative

if they are inhibited. Such kinds of genetic networks

are described mathematically by differential equations

of the following kind:

dxiðtÞ

dt
¼

X
j

wijxjðtÞ þ
X
k

vikukðtÞ þ bi 2 lixiðtÞ
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Figure 11. Growing factors are extra cellular proteins with hormonal function, which stimulate the gene expression by activating receptors

localized in the cell membrane. Erythropoietin (yellow) is a growing factor (with 4-helices bundle structure) involved in the differentiation of

spinal cord stem cells into erythrocytes. The binding of the growing factor causes a dimerisation of the receptor (blue and red). The

dimerisation of the extra cellular part (the binding part) leads to a dimerisation of the intra cellular part which provides the really signal. This

activates further interaction chains resulting in the initiation of transcription processes and gene expression. The visualization was performed

by use of an atomic coordinate file from the PDB database. Resolution: 1.90 angstroms. The interacting residues are visualized in a ball-and-

stick representation and the rest of the growing factor and receptors as ribbons. Available in colour online.

Figure 12. Crystal structure of human transcription cofactor PC4 interacting with a part of a single-stranded DNA. Resolution: 1.74

angstroms. The cofactor is part of a protein complex directly involved in the transcription process which consists of the steps: initiation,

elongation and termination. The DNA segment is visualized in a ball-and-stick representation (covalent bonds are represented as sticks

between atoms, which are represented as spheres). The protein (transcription cofactor) is represented as a ribbon, showing a-helices and b-

sheets as secondary structure elements. The visualization was performed by use of an atomic coordinate file from the PDB database.
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The variable xi(t) describes the gene expression of

gene i at time point t. The weighting factor wij

considers the influence of gene j on gene i. The

parameter vik considers the influence of an external

stimulus uk(t) (stimulation with drugs, nutritive

substances, hormones etc.) on gene i at time point t.

The value bi describes the basic expression level of

gene i and li is the degradation constant of the i-te

gene product.

Such equations describe linear models and are used

for the modelling of the entire gene interactions in a

cell [30]. Beside the described gene network, also

Boole networks (based on a binarisation of the

expression values) and Bayesian networks (where the

gene regulations are described by probability distri-

butions) are used [31,32].

Goal of the genetic networks is to obtain an, as far as

possible, realistic model of the cellular processes at a

molecular level. This offers the possibility to simulate

the interaction of drugs and to model different

therapies, which enable the re-establishing of an

optimal gene expression status, at the computer. This

is of special importance for the clinical and

pharmacological research.

Clinical research with DNA microarrays

DNA microarrays are powerful tools to improve the

quality of medicine. Microarrays seem to be an

important tool for diagnosis of diseases [33–37]. Of

special interest is how gene expression is changed by

various diseases. Clinical application of DNA micro-

arrays emphases cancer microarrays and the improv-

ing of health care (in common specific cancer

chemotherapies the efficacy can as low as 25%).

They allow it to compare the effectiveness of a drug

treatment for different types of cancer and to explore

the genomic responses to drug treatments (pharma-

cogenomics). Compared are gene expression

profiles in healthy state, disease state and after drug

administration. Main goals are: identification of

disease associates genes and expression profiles,

identification of variations in genes that affect

individual response to drugs. Medical benefits are

improved diagnosis and treatment. (Common

drug treatments are effective only for 50–75%

patients, [38].)

Improve diagnosis and treatment of cancer

A well known study with micrarrays is the diagnosis of

diffuse large B-cell lymphoma, which is a very

aggressive malignancy of B-cells. Certain kinds of

lymphoma cancer can be differentiated by their

specific gene expression. The exact diagnosis of the

type of lymphoma is essential for a successful

treatment. A subset of genes, the so called signatures

genes, was able to classify the samples of normal and

malignant lymphocytes based on cell types. By use of

the signatures genes the diffuse large B-cell lymphoma

samples are reclassified into two distinct clusters with

two different clinical outcomes. Patients whose cells

appeared to be germinal centre like had a much higher

survival rate than those with activated B-cell like

lymphoma [39]. In another study, it was shown that

(among other procedures) by gene expression profil-

ing the tumor-infiltrating immune cells in large

cohorts of colorectal cancer can be characterized,

which helps for a better prediction of patient survival.

The obtained data support the hypothesis that the

adaptive immune response influences the behaviour of

human tumors [40].

Improve the quality and utilization of medications

Microarrays are used to better understand how

medications work and how their effectiveness can be

improved. The mechanism of a drug can be more

completely understood by studying how it affects the

genome in vivo [41,42]. Additionally, the genomic

response to a particular drug can reveal why some

compounds produce unwanted side effects. To predict

the success of chemotherapy agents two data sets are

combined [43]. The first data set results from

microarray analysis of different tumor cell lines. The

second is a drug activity profile that measured the

effectiveness of chemotherapy medications on each of

the tumour cell lines. The combination of both data

sets (the so called clustered image map) enables it to

predict which medication might be the best for the

cancer of an individual person or why some unwanted

site effects occur.

Conclusion

Microarrays are powerful tools to analyze genomes

in vivo. They allow the analysis of the function of

genes and their products at a molecular level.

Changes in gene expression, as a response to

changing environment conditions, can be detected

allowing insights into the dynamic of the genome.

New genes can be detected and the biological

annotation to the genes can be refined. Substantial

progress has been made toward the use of microarray

to improve the treatment of cancer. Development and

understanding of medications are enhanced when

microarrays are incorporated into the process.

Establishing robust paths from genomic expression

data to improved health care is one of the challenges

in the future.
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