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Last time – Tuesday 2nd of February, and today, February the 9th:

• 8.1 performance of Sample-and-Hold Circuits
• 8.2 MOS Sample-and-Hold circuits

8 3 Examples of CMOS S/H circuits• 8.3 Examples of CMOS S/H circuits
• 8.5 Bandgap Voltage Reference Basics
• 8.6 Circuits for Bandgap References8.6 Circuits for Bandgap References
• Chapter 9 Discrete-Time Signals
• 9.1 Overview of some signal spectra
• 9.2 Laplace Transforms of Discrete-Time 

Signals
• 9 3 Z transform• 9.3 Z-transform



Voltage references (chapter 8.5)
P• Purpose:

• Generate a constant on-chip voltage which is independent 
of temperature, supply voltage, aging etc.of temperature, supply voltage, aging etc.

• Different approaches:
• 1) Breakdown voltage of a reverse-biased zener diode

• Too high voltage for CMOS 
• 2) Threshold voltage difference between CMOS 

enhancement and depletion transistorsenhancement and depletion transistors
• Depletion-mode transistors unavailable in most CMOS processes

• 3) Bandgap references: Canceling the negative 
temperature dependence of a forward biased pn junctiontemperature dependence of a forward-biased pn-junction 
(CTAT) with a positive temperature dependence (PTAT) 
(proportional-to-absolute-temperature) circuit

• Most commonly used
• CTAT: Conversely proportional to temperature
• PTAT: Proportional to temperaturep p



More about todays Bandgap Reference 
agenda (including but not limited to):agenda (including, but not limited to):

• About the fundamental equations giving the 
l ti hi b t th t t lt frelationship between the output voltage of a 

bandgap reference and temperature.
• How to design a bandgap reference for a ”most 

stable” reference voltage at a particular 
temperature.

• How to estimate temperature dependence at 
another temperature that the BG reference was 
designed for.

• Practical implementations
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Basic principle
IB

VBE

V ref VBE K VBEΔ+=

Th l V i CTAT

PTAT Generator K

VBEΔ

• The voltage VBE is CTAT
• The voltage           is PTATVBE

• is scaled by K to get the same slope as VBE
• By adding VBE and K           , the output VrefVBE

VBE

y g BE ref
becomes independent of temperature



Bandgap reference example
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Theory
• Collector current

IC Ise
V

BE
kT  q =

• Solved with respect to VBE:
T  T mkT T0  kT JC 

- The junction current equals the effective area of the base-

VBE VG0 1 T
T0
------– 

  VBE0
T
T0
------ mkT

q
------------ ln

T0
T
------
 
  kT

q
------- ln

JC

JC0
--------
 
 
 

+ + +=

emitter junction times the junction current density, Jc:
-

IC AEJC=

The difference between two base-emitter junctions biased 
at different densities (proportional to temperature):

IC AEJC

at different densities (proportional to temperature):

VBE V2 V1– kT
q

------- ln
J2
J1
----
 
 
 = =



Example 8.3



Theory
• Assuming that:

Ji
J
------ T

T
------=

• Vref can then be written as:
Ji0 T0

Vref VBE2 K VBE+=

VG0
T
T0
------ VBE0-2 VG0–  m 1– 

kT
q

------- ln
T0
T
------
 
  KkT

q
------- ln

J2
J1
----
 
 
 

+ + +=

• For a given temperature Vref may be independent of 
h i th t t if l f K i

 

changes in the temperature if a proper vaule of K is 
assigned

• This (equation 8 16) is the fundamental equation giving• This (equation 8.16) is the fundamental equation giving 
the relationship between the output voltage of a 
bandgap voltage reference and temperature.g p g p



From VBE as a function of collector current and temperature to 
Vout for BG ref.  (part 1 of 2)( )
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From VBE as a function of collector current and temperature to 
Vout for BG ref. (part 2 (of 2))Vout for BG ref.  (part 2 (of 2))
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Differentiating eq. 8.16 with respect to temperature, getting eq. 8.17



Setting equation 8.17 = 0, and T = T0 getting eq. 8.18, giving the 
needs for zero temperature dependence at the reference temp.needs for zero temperature dependence at the reference temp.



Setting T=T0 in eq. 8.16 gives the left side of eq. 8.18



For zero temperature dependence at T=T0. At 300 K (8.18, 8.19, 8.20):



Required value for K at 300K (eq. 8.21):



Output voltage for temperatures different from the reference; get 
(8.22) and then differentiate …( )



(8.22) differentiated with respect to T, getting (8.23):



Example 8.4



CMOS Bandgap Referencesg p

p+n+

n-well
n+p+

p-well

p– substrate n– substrate VDD

V i l CMOS ll i i ll d

n-well p-well

• Vertical CMOS well transistors in an n-well and 
p-well process (pnp in –well, npn in p-well)



CMOS BGR Circuits

R3R1
Q1 Q2

R2I1 I2
Vref

R2

R3R1
Q1 Q2

I2I1
Vref

31

n-well p-well

• CMOS bandgap references implemented with well 

p

g p p
transistors



Design equations, BG ref.
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Design Equationsg q

Vref VEB1 VR1+=ref EB1 R1

VR2 VEB1 VEB2– VEB= =

VR3
R3
R2
------VR2

R3
R2
------ VEB= =

Vref VEB1
R3
R2
------ VEB+=

2



Design Equations

J1 R3
J2
----

R1
------=

VEB VEB1 VEB2– kT
q

------- ln
J1
J2
----
 
 
 = =

Vref VEB1
R3
R
------kT------- ln

R3
R
------
 
 
 +=ref EB1 R2 q R1 
 

R
K

R3

R2
------=
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Example 8.5 (2)
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Chapetr 9; Discrete-time signals

• Discrete-time signal processing is heavily used in the 
design and analysis of oversampling A/D and D/A 
converters as well as switched capacitor filtering 
;”SC-circuits”.

• Switched Capacitor filters are classified as analog, 
since they use continous time analog values.y g



Overview of signal spectra – conceptual and physical realizations
s t( ) x n( ) xc nT( )= ( ) t( ) y t( )

convert to
discrete-time

sequence
DSP

convert to
impulse

train
hold

analog
low-pass

filter

xc t( ) xs t( )

( ) c( ) y n( ) ys t( ) ysh t( )

yc t( )

DSP
A/D

sample analog
low-passand

D/A
converter

xc t( )

xsh t( ) x n( ) xc nT( )= y n( )
ysh t( )

yc t( )

• An anti-aliasing filter (not shown) is assumed to band 
li it th ti ti i l (t)

DSPconverter
p

filterhold with hold

limit the continous time signal, xc(t).
• DSP (”discrete-time signal processing”) may be 

accomplished using fully digital processing or 
discrete-time analog circuits (ex.: SC-circ.).  



Signals in time, and frequency spectra
• S(t): periodic impulse• S(t): periodic impulse 

train with period T (T=1/fs)

• xs(t) has the same 
f tfrequency spectrum as 
xc(t), but the baseband 
spectrum repeats every 
fs (assuming no aliasing)

• x(n) has the same 
frequency spectrum asfrequency spectrum as 
xc(t), but the sampling 
frequency is normalized 
to 1to 1

• The frequency spectrum 
of xsh(t) is equal to that 
f (t) lti li d b thof xs(t) multiplied by the 

sin(x)/x response of the 
S/H.



Laplace Transform of Discrete-Time Signals (1/3)

xc t( )

xs t( ) (All pulses)

nT

T


t

2T 3T

• The signal must be defined for all time
• For t=nT:

xsn t( ) (Single pulse at nT)

x nT( )• For t=nT:

•  is chosen such that the area under xs(nT) equals the value of xc(nT)
A h 0 h h i h f ( T)

xs nT( )
xc nT( )


----------------=

• As approaches 0, the height of xs(nT) goes to 



Laplace Transform of Discrete-Time Signals (2/3)

• A single pulse at t=nT may be defined as:

• is the step function: t( )  t( ) 1 t 0 
0 t 0 






• may then be rewritten as a linear combination of a series

 

t( )• may then be rewritten as a linear combination of a series 
of pulses, xfs(t), where xsn(t) is zero everywhere except for 
a single pulse at nT: x nT( )

xs t( )

a s g e pu se at
xsn t( )

xc nT( )


----------------  t nT–( )  t nT– –( )– =



is now defined for all time: xs t( ) xsn t( )
n –=



=
xs t( )



Laplace Transform of Discrete-Time Signals (3/3)

• The Laplace transform for xsn(t) is:
s–

Si th i li l ti hi b t (t) d

Xsn s( ) 1

--- 1 e s–

s
------------------
 
 xc nT( )e snT–=

• Since there is a linear relationship between xs(t) and 
xsn(t), the Laplace transform of xs(t) is:

Xs s( ) 1

--- 1 e s– –

s
------------------
 
  xc nT( )e snT–

n –=



=

• When  approaches 0, the term before the sum 
equals 1 (eq. 9.7):

( ) ( ) snT–


sTXs s( ) xc nT( )e snT

n –=
=

X z( ) xc nT( )z n–

n –=





z esT




Spectra of Discrete-Time Signals (1/2)p g ( )

• The frequency spectrum of xs(t) may be found by replacing s 
by j in the Laplace transform (eq 9 7)by j in the Laplace transform (eq. 9.7).

• Another more intuitive approach is to use the property that 
multiplication in the time domain equals convolution in themultiplication in the time domain equals convolution in the 
frequency domain. Using this and τ 0, Xs(t) can be rewritten

t( ) t( ) t( )
• Define a pulse-train:

xs t( ) xc t( )s t( )=

• The sampled signal is now: s t( )  t nT–( )
n –=



=

• The Fourier-transform of s(t) is:



Sj( ) 2
T
------  k2

T
------–( )

k –=



=



Spectra of Discrete-Time Signals (2/2)p g
• Writing (9.8) in the frequency domain:

X j( ) 1 X j( ) S j( )

• The frequency spectrum of x (t) is then (eq 9 12):

Xs j( ) 1
2
------Xc j( ) S j( )=

The frequency spectrum of xs(t) is then (eq. 9.12): 

X j( ) 1 X j
jk2( )



Xs j( ) 1
T
--- Xc j

j 
T

------------–( )
k –=
=

which is periodic with period fs ( 9.13:). 
No aliasing occurs if f<fs/2 1 g

Xs f( ) 1
T
--- X c j2 f jk2f s–( )

k –=
=



Multiplication in the time domain equals convolution in the frequency domain

• Figure from E. O. Brigham: ”The Fast Fourier 
Transform”, Prentice Hall Inc., 1974.,  in S. Aunet: 
”BiCMOS sample-and-hold for satellitt-kommunikasjon”, Cand. 
Scient. Thesis, University of Oslo, 1993.Scient. Thesis, University of Oslo, 1993.

• Wikipedia; Convolution:
• In mathematics and, in particular, functional analysis, 

convolution is a mathematical operation on two functions f and p
g, producing a third function that is typically viewed as a modified 
version of one of the original functions. Convolution is similar to 
cross-correlation. 

• Computing the inverse of the convolution operation is known as 
d l tideconvolution.

• In mathematics, the Fourier transform (often abbreviated FT) is 
an operation that transforms one complex-valued function of a 
real variable into another In such applications as signalreal variable into another. In such applications as signal 
processing, the domain of the original function is typically time
and is accordingly called the time domain. That of the new 
function is frequency, and so the Fourier transform is often called 
the frequency domain representation of the original function. It 
d ib hi h f i t i th i i l f tidescribes which frequencies are present in the original function.



Sampling at different frequencies

• Figure from W. Kester et. Al.: ”Mixed-Signal Seminar”, Analog Devices, 1991.,  in S. Aunet: ”BiCMOS sample-and-hold for 
satellitt-kommunikasjon”, Cand. Scient. Thesis, University of Oslo, 1993.



Aliasing and potential degrading of signal / noise

• Figure from W. Kester et. Al.: ”Mixed-Signal Seminar”, Analog Devices, 1991.,  in S. Aunet: ”BiCMOS sample-and-hold for 
satellitt-kommunikasjon”, Cand. Scient. Thesis, University of Oslo, 1993.



Z-Transform

• Discrete-time systems are most often analyzed 
i th t f hi h i i l t t thusing the z-transform which is equivalent to the 

Laplace-transform with the following substitution:

• Then the z-transform is defined as :
z esT
z e

X z( ) xc nT( )z n–



n –=




Z-Transform
T i i f h f• Two important properties of the z-transform:

• 1) If                         , then
• 2) Convolution in the time domain is equal to

x n( ) X z( ) x n k–( ) z k– X z( )
• 2) Convolution in the time-domain is equal to 

multiplication in the freq. domain ( If y(n)=h(n)    x(n), then 
Y(z) = H(z)X(z). Similarly, multiplication in the time-Y(z)  H(z)X(z). Similarly, multiplication in the time
domain equals convolution in the frequency domain

• X(z) is only related to the sampled sequence of numbers, 
while Xs(s) is the Laplace transform of xs(t) when  -> 0

• The frequency response of Xs(f) is related to X() the 
following way: 2 ffollowing way: 

• Thus, the following scaling has been applied:

Xs f( ) X 2f
fs

---------( )=

us, e o o g sca g as bee app ed


2f
fs

---------=



Z-Transform
• Important observation:

• Discrete-time signals have  in units ofDiscrete time signals have  in units of 
radians/sample

• The original continuous-time signal have frequency 
units of cycles/second (Hertz) or radians / second.    
(2 Radians ~ 360 degrees)

• Example:
• A continuous-time sinusoidal signal of 1kHz when 

sampled at 4 kHz will change by /2 radians betweensampled at 4 kHz will change by /2 radians between 
each sample. In such case the discrete time signal is 
defined to have a frequency of /2 radians perdefined to have a frequency of /2 radians per 
sample 



Next time, Tuesday 16th of February

• Chapter 9; 9.4 – 9.6
• Chapter 10; Switched Capacitor Circuits

21

V1 V2
V1 V2

R
eq

C
1

1 2

TR
eq

T
C

1
------=

Q C
1

V
1

V
2–  every clock period=
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