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Bandgap References and Discrete Time Signals
(chapter 8 + 9)

Tuesday 9th of February, 2010

Snorre Aunet, sa@ifi.uio.no
Nanoelectronics Group, Dept. of Informatics

Office 3432

Last time – Tuesday 2nd of February, and today, February the 9th:

• 8.1 performance of Sample-and-Hold Circuits
• 8.2 MOS Sample-and-Hold circuits
• 8.3 Examples of CMOS S/H circuits
• 8.5 Bandgap Voltage Reference Basicsg p g
• 8.6 Circuits for Bandgap References
• Chapter 9 Discrete-Time Signals
• 9.1 Overview of some signal spectra
• 9.2 Laplace Transforms of Discrete-Time 

Signals
• 9.3 Z-transform
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Voltage references (chapter 8.5)
• Purpose:

• Generate a constant on-chip voltage which is independent 
of temperature, supply voltage, aging etc.

• Different approaches:
1) B kd lt f bi d di d• 1) Breakdown voltage of a reverse-biased zener diode

• Too high voltage for CMOS 
• 2) Threshold voltage difference between CMOS 

enhancement and depletion transistors
• Depletion-mode transistors unavailable in most CMOS processes

• 3) Bandgap references: Canceling the negative 
temperature dependence of a forward-biased pn-junction 
(CTAT) ith a positi e temperat re dependence (PTAT)(CTAT) with a positive temperature dependence (PTAT) 
(proportional-to-absolute-temperature) circuit

• Most commonly used
• CTAT: Conversely proportional to temperature
• PTAT: Proportional to temperature

More about todays Bandgap Reference 
agenda (including, but not limited to):

• About the fundamental equations giving the 
relationship between the output voltage of a 
bandgap reference and temperaturebandgap reference and temperature.

• How to design a bandgap reference for a ”most 
stable” reference voltage at a particular 
temperature.

• How to estimate temperature dependence at 
another temperature that the BG reference wasanother temperature that the BG reference was 
designed for.

• Practical implementations
9. februar 2010 4
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Basic principle

IB

VBE

• The voltage VBE is CTAT
• The voltage           is PTAT
• is scaled by K to get the same slope as VBE

VBE
VBE

PTAT Generator K

VBEΔ

V ref VBE K VBEΔ+=

is scaled by K to get the same slope as VBE

• By adding VBE and K           , the output Vref

becomes independent of temperature
VBE

BE

Bandgap reference example
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Theory
• Collector current

• Solved with respect to VBE:

IC Ise
V

BE
kT  q 

=

p BE

- The junction current equals the effective area of the base-
emitter junction times the junction current density, Jc:

-

Th diff b b i j i bi d

IC AEJC=

VBE VG0 1
T
T0
------–

 
  VBE0

T
T0
------ mkT

q
------------ ln

T0

T
------
 
  kT

q
------- ln

JC

JC0
--------
 
 
 

+ + +=

The difference between two base-emitter junctions biased 
at different densities (proportional to temperature):

VBE V2 V1–
kT
q

------- ln
J2

J1
----
 
 
 

= =

Example 8.3
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Theory
• Assuming that:

• Vref can then be written as:

Ji

Ji0
------ T

T0
------=

Vref can then be written as:

• For a given temperature Vref may be independent of 
changes in the temperature if a proper vaule of K is 

Vref VBE2 K VBE+=

VG0
T
T0
------ VBE0-2 VG0–  m 1– 

kT
q

------- ln
T0

T
------
 
  K

kT
q

------- ln
J2

J1
----
 
 
 

+ + +=

assigned
• This (equation 8.16) is the fundamental equation giving 

the relationship between the output voltage of a 
bandgap voltage reference and temperature.

From VBE as a function of collector current and temperature to 
Vout for BG ref.  (part 1 of 2)
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From VBE as a function of collector current and temperature to 
Vout for BG ref.  (part 2 (of 2))

9. februar 2010 11

Differentiating eq. 8.16 with respect to temperature, getting eq. 8.17
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Setting equation 8.17 = 0, and T = T0 getting eq. 8.18, giving the 
needs for zero temperature dependence at the reference temp.

Setting T=T0 in eq. 8.16 gives the left side of eq. 8.18
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For zero temperature dependence at T=T0. At 300 K (8.18, 8.19, 8.20):

Required value for K at 300K (eq. 8.21):
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Output voltage for temperatures different from the reference; get 
(8.22) and then differentiate …

(8.22) differentiated with respect to T, getting (8.23):
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Example 8.4

CMOS Bandgap References

p+n+ n+p+

• Vertical CMOS well transistors in an n-well and 

p– substrate

n-well

n– substrate

p-well

n-well p-well

VDD

p-well process (pnp in –well, npn in p-well)
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CMOS BGR Circuits

R3

R2

R1

Q1 Q2

I I
Vref

R2

R3R1
Q1 Q2

I1 I2

I2I1
Vref

n-well p-well

• CMOS bandgap references implemented with well 
transistors

Design equations, BG ref.

9. februar 2010 22
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Design Equations

Vref VEB1 VR1+=

VR2 VEB1 VEB2– VEB= =

VR3
R3

R2
------VR2

R3

R2
------ VEB= =

Vref VEB1
R3

R2
------ VEB+=

Design Equations

J1

J2
----

R3

R1
------=

VEB VEB1 VEB2–
kT
q

------- ln
J1

J2
----
 
 
 

= =

Vref VEB1

R3

R2
------kT

q
------- ln

R3

R1
------
 
 
 

+=

K
R3

R2
------=
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Example 8.5 (2)
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Chapetr 9; Discrete-time signals

• Discrete-time signal processing is heavily used in the 
design and analysis of oversampling A/D and D/A 

t ll it h d it filt iconverters as well as switched capacitor filtering 
;”SC-circuits”.

• Switched Capacitor filters are classified as analog, 
since they use continous time analog values.
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Overview of signal spectra – conceptual and physical realizations

convert to
discrete-time

sequence
DSP

convert to
impulse

train
hold

analog

low-pass
filter

xc t( )

s t( )

xs t( )

x n( ) xc nT( )=
y n( ) ys t( ) ysh t( )

yc t( )

• An anti-aliasing filter (not shown) is assumed to band 
limit the continous time signal, xc(t).

DSP
A/D

converter

sample analog

low-pass
filter

and
hold

D/A
converter

with hold

xc t( )

xsh t( ) x n( ) xc nT( )= y n( )
ysh t( )

yc t( )

g , c( )
• DSP (”discrete-time signal processing”) may be 

accomplished using fully digital processing or 
discrete-time analog circuits (ex.: SC-circ.).  

Signals in time, and frequency spectra
• S(t): periodic impulse 

train with period T (T=1/fs)

• xs(t) has the same 
frequency spectrum as 
xc(t), but the baseband 
spectrum repeats every 
fs (assuming no aliasing)

• x(n) has the same 
frequency spectrum as 
xc(t), but the sampling 
frequency is normalized 
to 1
Th f t• The frequency spectrum 
of xsh(t) is equal to that 
of xs(t) multiplied by the 
sin(x)/x response of the 
S/H.
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Laplace Transform of Discrete-Time Signals (1/3)

xc t( )

xs t( )
(All pulses)

• The signal must be defined for all time
• For t=nT:

T


t

2T 3T

nT

xsn t( ) (Single pulse at nT)

xs nT( )
xc nT( )
----------------=

•  is chosen such that the area under xs(nT) equals the value of xc(nT)
• As approaches 0, the height of xs(nT) goes to 

s( )




Laplace Transform of Discrete-Time Signals (2/3)

• A single pulse at t=nT may be defined as:

• is the step function: t( )  t( ) 1 t 0 




is the step function:

• may then be rewritten as a linear combination of a series 
of pulses, xfs(t), where xsn(t) is zero everywhere except for 
a single pulse at nT:

xsn t( )
xc nT( )
----------------  t nT–( )  t nT– –( )– =

 t( )
0 t 0 



xs t( )

is now defined for all time:

sn( )


( )  ( ) 

xs t( ) xsn t( )
n –=



=
xs t( )
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Laplace Transform of Discrete-Time Signals (3/3)

• The Laplace transform for xsn(t) is:

Xsn s( ) 1

--- 1 e

s–
–

s
------------------ 
 xc nT( )e

snT–
=

• Since there is a linear relationship between xs(t) and 
xsn(t), the Laplace transform of xs(t) is:

• When  approaches 0, the term before the sum



Xs s( ) 1

--- 1 e

s– –
s

------------------ 
  xc nT( )e

snT–

n –=



=

When  approaches 0, the term before the sum 
equals 1 (eq. 9.7):

Xs s( ) xc nT( )e
snT–

n –=



=

X z( ) xc nT( )z
n–

n –=





z e
sT



Spectra of Discrete-Time Signals (1/2)

• The frequency spectrum of xs(t) may be found by replacing s 
by j in the Laplace transform (eq. 9.7).

• Another more intuitive approach is to use the property that pp p p y
multiplication in the time domain equals convolution in the 
frequency domain. Using this and τ 0, Xs(t) can be rewritten

• Define a pulse-train:



xs t( ) xc t( )s t( )=

• The sampled signal is now:

• The Fourier-transform of s(t) is:

s t( )  t nT–( )
n –=
=

Sj( ) 2
T
------  k2

T
------–( )

k –=



=
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Spectra of Discrete-Time Signals (2/2)

• Writing (9.8) in the frequency domain:

Xs j( ) 1
2
------Xc j( ) S j( )=

• The frequency spectrum of xs(t) is then (eq. 9.12): 

which is periodic with period f ( 9 13:)

Xs j( ) 1
T
--- Xc j

jk2
T

------------–( )
k –=



=

which is periodic with period fs ( 9.13:). 
No aliasing occurs if f<fs/2

Xs f( ) 1
T
--- X c j2 f jk2f s–( )

k –=



=

Multiplication in the time domain equals convolution in the frequency domain

• Figure from E. O. Brigham: ”The Fast Fourier 
Transform”, Prentice Hall Inc., 1974.,  in S. Aunet: 
”BiCMOS sample-and-hold for satellitt-kommunikasjon”, Cand. 
Scient. Thesis, University of Oslo, 1993.

• Wikipedia; Convolution:

I th ti d i ti l f ti l l i• In mathematics and, in particular, functional analysis, 
convolution is a mathematical operation on two functions f and 
g, producing a third function that is typically viewed as a modified 
version of one of the original functions. Convolution is similar to 
cross-correlation. 

• Computing the inverse of the convolution operation is known as 
deconvolution.

• In mathematics, the Fourier transform (often abbreviated FT) is 
an operation that transforms one complex-valued function of a 
real variable into another. In such applications as signal 
processing, the domain of the original function is typically time
and is accordingly called the time domain. That of the new 
function is frequency, and so the Fourier transform is often called 
the frequency domain representation of the original function. It 
describes which frequencies are present in the original function.
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Sampling at different frequencies

• Figure from W. Kester et. Al.: ”Mixed-Signal Seminar”, Analog Devices, 1991.,  in S. Aunet: ”BiCMOS sample-and-hold for 
satellitt-kommunikasjon”, Cand. Scient. Thesis, University of Oslo, 1993.

Aliasing and potential degrading of signal / noise

• Figure from W. Kester et. Al.: ”Mixed-Signal Seminar”, Analog Devices, 1991.,  in S. Aunet: ”BiCMOS sample-and-hold for 
satellitt-kommunikasjon”, Cand. Scient. Thesis, University of Oslo, 1993.
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Z-Transform

• Discrete-time systems are most often analyzed 
using the z-transform which is equivalent to the 
Laplace-transform with the following substitution:Laplace-transform with the following substitution:

• Then the z-transform is defined as :

z e
sT



X z( ) xc nT( )z
n–

n –=





Z-Transform
• Two important properties of the z-transform:

• 1) If                         , then
• 2) Convolution in the time-domain is equal to 

multiplication in the freq. domain ( If y(n)=h(n)    x(n), then 

x n( ) X z( ) x n k–( ) z
k–
X z( )

Y(z) = H(z)X(z). Similarly, multiplication in the time-
domain equals convolution in the frequency domain

• X(z) is only related to the sampled sequence of numbers, 
while Xs(s) is the Laplace transform of xs(t) when  -> 0

• The frequency response of Xs(f) is related to X() the 
following way: Xs f( ) X 2f

f
---------( )=

• Thus, the following scaling has been applied:

s( )
fs

( )


2f
fs

---------=
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Z-Transform

• Important observation:
• Discrete-time signals have  in units of 

radians/sample
Th i i l i i i l h f• The original continuous-time signal have frequency 
units of cycles/second (Hertz) or radians / second.    
(2 Radians ~ 360 degrees)

• Example:
• A continuous-time sinusoidal signal of 1kHz when 

sampled at 4 kHz will change by /2 radians between 
each sample. In such case the discrete time signal is 
defined to have a frequency of /2 radians per 
sample 

Next time, Tuesday 16th of February

• Chapter 9; 9.4 – 9.6
• Chapter 10; Switched Capacitor Circuits
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C
1

V1 V2
V1 V2

R
eq

R
eq

T
C

1

------=
Q C V V  every clock period=

9. februar 2010 42

1Q C
1

V
1

V
2–  every clock period=


