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Last time – Tuesday 9th of February, and today, February the 16th:

• 8.5 Bandgap Voltage Reference Basics
• 8.6 Circuits for Bandgap References

Chapter 9 Discrete Time Signals• Chapter 9 Discrete-Time Signals
• 9.1 Overview of some signal spectra
• 9.2 Laplace Transforms of Discrete-Time9.2 Laplace Transforms of Discrete Time 

Signals

• 9.2 -9.6
• 10.1-10.2 (10.3((?)))
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9.5 Discrete-Time Filters (pp. 382 in “J&M”)

u n( ) y n( )

( equals if is an impulse)h n( ) u n( )

H z( )

y n( )

• An input series of numbers is applied to a filter to 
(Discrete-time filter)

( q p )( ) ( )y( )

create a modified output series of numbers
• Discrete-time filters are most often analyzed and y

visualized in terms of the z-transform
• In this figure (Fig. 9.9) the output signal is defined to g ( g ) p g

be the impulse response, h(n), when the input, u(n), is 
an impulse (i.e. 1 for n = 0 and 0 otherwise. Transfer p (
function; H(z) being the z-transform of the impulse 
response, h(n) .p , ( )



Continuous time LP-filter 
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Discrete-Time Transfer Function
A th f ll i (LP ) t f f ti• Assume the following (LP-) transfer function:

H z( ) 0,05--------------------------------------=

z-plane
j

ej

 0=

  2=

• Poles: Complex conjugated at 0 8+/ 0 1j

H z( )
z2 1,6z– 0,65+

-1

1

j



 2=

 =

• Poles: Complex conjugated at 0.8+/-0.1j
• Zeros: Two zeros at infinity (Defined). The number of zeros at infinity reflects the 

difference in order between denominator and nominator
I th di t ti i 1 d t th f t b th d ( 0)

-j


3
2

------=

• In the discrete time somain z=1 corresponds to the freq. response at both dc (ω= 0) 
and ω = 2π. 

• The frequency respons need only be plotted for 0 ≤ ω ≤ π (frequency response 
t 2repeats every 2π.

• The unit circle, ejω , is used to determine the frequency response of a system that 
has it’s input and output as a series of numbers.

• (The magnitude is represented by the product of the lengths of the zero-vectors 
divided by the product of the lengths of the pole-vectors.

• The phase is calculated using addition and subtraction)



Frequency response
high-frequency

s-plane
j =

z-plane
j

ej
  2=

j

-1

1



2

 0=

dc
(poles) j 0=

1

-j

 2=

 =

• The frequency response of discrete-time filters are similar to 
th f ti ti filt Th l d


3
2

------=

the response of continuous-time filters. The poles and zeroes 
are located in the z-plane instead of the s-plane

• DC/2 equals z=1 fs/2 equals z= 1• DC/2 equals z=1, fs/2 equals z=-1
• The response is periodic with period 2
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Stability of Discrete-Time Filters

z 1–

b

x n( ) y n( )

y n 1+( )

a

• The filters are described by finite difference 
equations y n 1+( ) bx n( ) ay n( )+=equations

• In the z-domain:

y n 1+( ) bx n( ) ay n( )+

Y( ) b
zY z( ) bX z( ) aY z( )+=In the z domain:

• H(z) has a pole in z=a. a<=1 to ensure stability
H z( ) Y z( )

X z( )
-----------

b
z a–
-----------=

( ) p y
• In general a LTI system is stable if all the poles are 

located inside or on the unit circle



Test for stability
Let the input x(n) be an impulse signal (i e 1 for n=0 and 0• Let the input, x(n) be an impulse signal (i.e. 1 for n=0, and 0
otherwise), which gives the following output signal, according to 
9.25, y(0) = k, where k is some arbitrary initial state for y.

• y(n+1)=bx(n) + ay(n)
• y(0+1) = b x(0) + a y(0) = b 1 + ak = b + ak,
• y(2) = b x(1) + a y(1) = b 0 + a (b + ak) = ab + a2ky(2)  b x(1) + a y(1)  b 0 + a (b + ak)  ab + a k
• Y(3) = b x(2) + a y(2) = b 0 + a y(2) = a (ab + a2k) = a2b +a3k
• Y(4) = a3b +a4k
• Response, h(n) = 0 for (n < 0),
• k for (n=0)
• (an-1b+ank) for n>=1(a b+a k) for n> 1
• This response remains bounded only when |a|<=1 for this 1st 

order filter, and unbounded otherwise.
f ( )• In general, an arbitrary, time invariant, discrete time filter, H(z), is 

stable if, and only if, all its poles are located within the unit circle.



IIR and FIR Filters
Infinite Impulse Response (IIR) filters are discrete• Infinite Impulse Response (IIR) filters are discrete-
time filters whose outputs remain non-zero when 
excited by an impulse:excited by an impulse:

• Can be more efficient
• Finite precision arithmetic may cause limit-cycleFinite precision arithmetic may cause limit cycle 

oscillations
• Finite Impulse Response (FIR) filters are discrete-Finite Impulse Response (FIR) filters are discrete

time filters whose outputs goes precisely to zero after 
a finite delay:a finite delay:

• Poles only in z=0
• Always stable
• Exact linear phase filters may be designed
• High order often required



Bilinear transform



Bilinear Transform

• In many cases it is desirable to convert a y
continuous-time filter into a discrete-time filter 
or vice-versa.

• is a CT transfer function with p =               
.Then
Hc p( ) p j+

p z 1–
z 1+
------------= z 1 p+

1 p–
------------=

• The bilinear transforms map the z-plane 
locations of 1(DC) and -1(fs/2) to the p-planelocations of 1(DC) and -1(fs/2) to the p-plane 
locations 0 and      .



Bilinear Transform

• The unit-circle              in the z-plane is mapped 
t th ti j i i th l

z ej=
to the entire j-axis in the p-plane:

ej 1– ej  2  ej  2  e j  2 –– p
ej 1+
----------------  

ej  2  ej  2  e j  2 –+ 
---------------------------------------------------------------= =

2j  2 sin

• The following frequency mapping occurs:

2j  2 sin
2  2 cos
----------------------------- j  2 tan= =

e o o g eque cy app g occu s

• Then and
  2 tan=

H z( ) H z 1  z 1+ ( ) H ej( ) H j  2 tan( )=Then                          andH z( ) Hc z 1–  z 1+ ( ) H e( ) Hc j  2 tan( )



Sample-and-Hold Response (1/3) p p
• A sampled and held signal is related to the 

l d ti ti i l f llsampled continuous-time signal as follows:
xsh t( ) xc nT( )  t nT–( )  t nT– T–( )– 



=

• Taking the Laplace-transform:

n –=


g

Xsh s( ) 1 e sT––
s

------------------- xc nT( )e snT–

n –=



=

1 esT–
s

----------------Xs s( )=



Sample-and-Hold Response (2/3)

The hold transfer function H (s) is due to the• The hold transfer function Hsh(s) is due to the 
previous result equal to:

H h s( )
1 e sT––-------------------=

• The spectrum is found by setting s=j:

Hsh s( ) s=

H s h j ( )
1 e j  T––

j 
--------------------- T e

j  T
2

----------–
 T

2
-------- 

 s i n

T 
--------------------- = =

• Finally the magnitude is given by:

j   T
2

-------- 
 

y g g y

• This response sin(x)/x is usually referred to as the sinc-
response.p



Sample-and-Hold Response (3/3)

• Shaping only occurs for continuous-time 
signals since a sampled signal will notsignals, since a sampled signal will not 
be affected by the hold function.

• A S/H before an A/D converter does notA S/H before an A/D converter does not 
reduce the demand of an anti-aliasing 
filter preceeding the A/D-converter, but 
simply allow the A/D to have a constant 
input value during the conversion.



Tuesday 16th of February:
• Discrete Time Signals (from chapter 9)

Today: as far as we get with:Today: as far as we get with: 
Chapter10 Switched Capacitor Circuits

10.1 Basic building blocks (Opamps, 
Capacitors, Switches, 
Nonoverlappingg clocks)Nonoverlappingg clocks)

10.2 Basic operation and analysis 
(Resistor equivalence of a Switched 
C it P iti I itiCapacitor, Parasitic Insensitive 
Integrators)



Properties of SC circuits
P l d t t f d li it• Popular due to accurate frequency response, good linearity 
and dynamic range

• Easily analyzed with z transform• Easily analyzed with z-transform
• Typically require aliasing and smoothing filters
• Accuracy is obtained since filter coefficients are determinedAccuracy is obtained since filter coefficients are determined 

from capacitance ratios, and relative matching is good in 
CMOS

• The overall frequency response remains a function of the 
clock, and the frequency may be set very precisely through the 

f l illuse of a crystal oscillator
• SC-techniques may be used to realize other signal processing 

blocks like for example gain stages voltage controlledblocks like for example gain stages, voltage-controlled 
oscillators and modulators



Basic building blocks in SC circuits; Opamps, capacitors, switches, clock
generators (chapter 10.1)

• DC gain typically in the order of 40 to 80 dB (100 – 10000 x)
• Unity gain frequency should be > 5 x clock speed (rule ofUnity gain frequency should be 5 x clock speed (rule of

thumb)
• Phase margin > 70 degrees (according to Johns & Martin)g g ( g )
• Unity-gain and phase margin highly dependent on the load

capacitance, in SC-circuits. In single stage opamps a
doubling of the load capacitance halves the unity gain
frequency and improve the phase margin

• The finite slew rate may limit the upper clock speed• The finite slew rate may limit the upper clock speed.
• Nonzero DC offset can result in a high output dc offset,

depending on the topology chosen especially if correlateddepending on the topology chosen, especially if correlated
double sampling is not used



Basic building blocks in SC circuits; Opamps, 
capacitors, switches, clock generatorsp , , g

C1

C

Cp1

poly1

poly2

thin oxide

hi k id

metalmetal

C1bottom plateCp2poly2 thick oxide

Cp2
Cp1

p

(substrate - ac ground)

• Typically constructed between two polysilicon layers
cross-section view equivalent circuit

• Parasitics; Cp1, Cp2.
• Parasitic Cp2 may be as large as 20 % of thep y g

desired, C11
•• Cp1 Cp1 typicallytypically 11‐‐ 5 % 5 % ofof C1. C1. ThereforeTherefore, , thethe equivalentequivalent modelmodelpp yp yyp y ,, qq
containcontain 3 3 capacitorscapacitors



Basic building blocks in SC circuits;
Opamps, capacitors, switches, clock generatorsOpamps, capacitors, switches, clock generators



v
1

v
1

v
2

v
2


Symbol n-channel

v
1 v

2




h l

transmission
gate

• Desired: very high off-resistance (to avoid leakage), relatively low 

v
1 v

2

2



p-channel

y g ( g ) y
on-resistance (for fast settling), no offset

• Phi, the clock signal, switches between the power supply levels
C ti Phi i hi h th t th it h i ( h t d)• Convention: Phi is high means that the switch is on (shorted)

• Transmission gate switches may increase the signal range
• Some nonideal effects: nonlinear capacitance on each side of the• Some nonideal effects: nonlinear capacitance on each side of the 

switch, charge injection, capacitive coupling to each side



Basic building blocks in SC circuits;
Opamps, capacitors, switches, clock generatorsOpamps, capacitors, switches, clock generators

V
on

V
off

1

1
T

off

V
off

V
on

2

nn 1–n 2– n 1+ t T delay

delay

2

fs
1
T
---

• Must be nonoverlapping; at no time both signals can be high
C ti i ”J h & M ti ” li b

off

n 1 2–n 3 2– n 1 2+ t T

• Convention in ”Johns & Martin”; sampling numbers are 
integer values 

• Location of clock edges need only be moderately controlled• Location of clock edges need only be moderately controlled 
(assuming low-jitter sample-and-holds on input and output of 
the overall circuit))

• Delay elements above can be an even number of inverters or 
an RC network



SC Resistor Equivalent (1/2)

21

V1 V2
V1 V2

R
eq

C
1

R
eq

T
C

1
------=

Q C
1

V
1

V
2–  every clock period=

Qx CxVx=

Q1 C1 V1 V2– =
C1 is first charged to V1 and then charged to V2 during one clock cycle

C1 V1 V2– 

The average current is then given by the change in charge during one cycle

Iavg
1 1 2 

T
-------------------------------=

Where T is the clock period (1/fs)



SC Resistor Equivalent (2/2)q
21

V1 V2
V1 V2

R
eq

C
1

R
eq

T
C

1
------=

Q C
1

V
1

V
2–  every clock period=

The current through an equivalent resistor is given by:

Combining the pre io s eq ation ith Ia g

I
V1 V2–

Combining the previous equation with Iavg:

Ieq Req
-------------------=

The resistor equivalence is valid when fs is much larger than the signal

Req
T
C1
------ 1

C1fs
----------= =

The resistor equivalence is valid when fs is much larger than the signal 
frequency. In the case of higher signal frequencies, z-domain analysis is 
required :



Example of resistor implementation

• What is the resistance of a 5 pF capacitance
sampled at a clock frequency of 100 kHz?sampled at a clock frequency of 100 kHz?

• Note the large resistance that can be implemented.
I l t d i CMOS it ld t k l fImplemented in CMOS it would take a large area for
a plain resistor of the same resistance

1Req
1

5 10 12–  100 103
 

-------------------------------------------------------- 2M= =
5 10  100 10 



An inverting integrator

v
c2

nT( )

21

C
2 1

v
ci

t( )

v
cx

t( )

v
co

t( )

C
1

v
o

n( ) v
co

nT( )=v
i

n( ) v
ci

nT( )=

v
c1

t( )
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Transfer function for simple discrete time integrator in chapter 10.2 

•



Example waveforms. H(z) rewritten to eliminate terms of z 
having negative powers. Equation representative just before g g p q p j

end of phi1 only

H z( )
Vo z( )

( )
-------------

C1
C
------
 
  1-----------–=

t

1

2

H z( )
Vi z( ) C2 z 1–

t
v

ci
t( )

t

v
cx

t( )

t

t

v
co

t( )



Frequency response (Low frequency) (1/2)

H z( )
C1
C2
------ 
  z 1 2/–

z1 2/ z 1 2/––
---------------------------–=

z ejT T cos j T sin+= =

T Tz1 2/ T
2

--------
 
 cos j T

2
--------
 
 sin+=

1 2/ T  T z 1 2/– T
2

--------
 
 cos j T

2
--------
 
 sin–=

T--------
 
 cos j T--------

 
 sin–

H ejT( )
C1
C2
------
 
  2 

cos j
2 

sin

j2 T
2

--------
 
 sin

---------------------------------------------------–=



Example 10.2 (2/2)p ( )
• Assuming low frequency i.e.               :

T 1«

• The gain-constant is depending only on the g p g y
capacitor-ratio and clock frequency:

H ejT( )
C1------
 
  1----------–H e( )
C2
------
 jT

----------

C11KI
C1
C2
------ 1

T
---



Parasitics reducing accuracy and performance
• Parasitics added
• Cp1 the one that is harmful, as 

accurate discrete-time 
frequency responses 
d d i t hiC C depends on precise matching 
of capacitors, (sometimes 
down to 0 1 percent)

21

C
2

1

C
p3

C
p4

down to 0.1 percent)
• Cp1 1-5 % of C1 (page 396)
• Gain coefficient related to

C
1

v
o

n( )

vi n( )

1

C
p1

• Gain coefficient related to   
Cp1 which is not well 
controlled and partly

C
p2

controlled and partly 
nonlinear larger area



Effect of parasitic capacitors
C

2

C
p3

C
p4

C C+
21

vi n( )

1

H z( )
C1 Cp1+

C2
---------------------
 
  1

z 1–
-----------–=

C
1

v
o

n( )

C
p1

C
p2

Th i ffi i t d d th iti d• The gain coefficient depends on the parasitic and 
possibly non-linear capacitance



Parasitic-Insensitive Integratorg
C

2

C
p4

C
p3

21

C
1

( )

v
i

n( )
1

v
o

n( )

2 1

• The following parasitics does not influence:

C
p1

C
p2

g p
• Cp2 is either connected to virtual ground or physical ground
• Cp3 is connected to virtual ground
• Cp4 is driven by the output• Cp4 is driven by the output
• Cp1 is charged between vi(n) and gnd, and does not affect charge 

on C1



Parasitic-Insensitive Integratorg
C2

2
1

C1

v
ci

t( )
1

v
co

t( )

( ) T( )

2 1

( ) T( )

co

v
o

n( ) v
co

nT( )=v
i
n( ) v

ci
nT( )=

• Two additional switches removes sensitivity to 
parasitics:

• Improved linearity• Improved linearity
• More well-defined and accurate transfer-functions



Transfer function not dependent on Cp1: 
(Circuit in Fig 10 9)(Circuit in Fig. 10.9)



Parasitic-Insensitive Integrator (fig. 10.9)
C2

2
1

C1

v
i

t( )
1

v t( )

v
o

n( ) v
co

nT( )=

ci
( )

2 1

v
i
n( ) v

ci
nT( )=

v
co

t( )

• Note that the integrator is now positive
• C and C no longer need to be much larger than parasitics

H z( )
Vo z( )
Vi z( )
-------------

C1
C2
------
 
  1

z 1–
-----------=

• C1 and C2 no longer need to be much larger than parasitics
• A remaining limitation is the lateral stray capacitance between the lines leading 

to the electrodes of C1 and C2. This can be reduced by inserting a grounded 
li b t th l d I th i i i ibl C d C lline between the leads. In any case the minimum permissible C1 and C2 values 
are reduced by a factor 10 – 50 if the stray-insensitive configuration is used, 
hence reducing the area required by the capacitors is reduced by the same 
f [G T 86] P i i i lfactor [GrTe86]. Price is proportional to area.

• While parasitics do not affect the discrete time difference equation (or H(z)), 
they may slow down settling time behaviour. 



H(z) for inverting, delay-free integrator



Inverting delay-free integrator (fig. 10.12)
C

2

1
1

2

C
1

1

v
o

n( )

v
i

n( )

V
i

z( ) 2 

V
o

z( )

2

• Equations similar to previous slide, but with clocking- and 
timing convention as in fig. 10.3:

C2vco nT T 2–( ) C2vco nT T–( )=

C2vco nT( ) C2vco nT T 2–( ) C1vci nT( )–=

• H(z) having z-1 removed:
2 co( ) 2 co ( ) 1 ci( )

H z( )
Vo z( )
Vi z( )
-------------

C1

C2
------
 
  z

z 1–
-----------–=



Next time, Tuesday the 23rd

• Rest of chapter 10. (10.3, 10.4, 10.5, 10.7)
• Chapter 11, Data Converter Fundamentals

• Additional litterature (chapter  9 and 10):

• ”Sedra & Smith”
• Franklin W. Kuo (FYS3220 (?))
• Nils Haaheim, Analog CMOS
• Basic Electrical Engineering, Schaum’s outlines
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