

Last time - Tuesday 9th of February, and today, February the 16th:

- 8.5 Bandgap Voltage Reference Basics
- 8.6 Circuits for Bandgap References
- Chapter 9 Discrete-Time Signals
- 9.1 Overview of some signal spectra
- 9.2 Laplace Transforms of Discrete-Time Signals
- 9.2-9.6
- 10.1-10.2 (10.3((?)))

Laplace transform $\bar{X}_{s n}(s)$
for $x_{s n}(t)$
$X_{s n}(s)=\frac{1}{\tau}\left(\frac{1-e^{-s \tau}}{s}\right) x_{c}(n T) e^{-s n T}$
Since $x_{s}(t)$ is a linear
combination of $x_{s n}(t)$, we abs
have
$X_{S}(s)=\frac{1}{\tau}\left(\frac{1-e^{-s \tau}}{s}\right) \sum_{n=-\infty}^{\infty} x_{c}(n T) e^{-s n T}$
When $\tau \rightarrow 0$ the term before the
summation goes to unity, so in
$(e q 9.7): \quad X(s)=\sum_{n=-\infty}^{\infty} x_{2}(n T) e^{-s_{n} T}$

- An input series of numbers is applied to a filter to create a modified output series of numbers
- Discrete-time filters are most often analyzed and visualized in terms of the z-transform
- In this figure (Fig. 9.9) the output signal is defined to be the impulse response, $h(n)$, when the input, $u(n)$, is an impulse (i.e. 1 for $\mathrm{n}=0$ and 0 otherwise. Transfer function; $\mathrm{H}(\mathrm{z})$ being the z -transform of the impulse response, $h(n)$

Discrete-Time Transfer Function

- Assume the following (LP-) transfer function:

$$
H(z)=\frac{0,05}{z^{2}-1,6 z+0,65}
$$

- Poles: Complex conjugated at $0.8+/-0.1 \mathrm{j}$

- Zeros: Two zeros at infinity (Defined). The number of zeros at infinity reflects the difference in order between denominator and nominator
- In the discrete time somain $\mathrm{z}=1$ corresponds to the freq. response at both dc $(\omega=0)$ and $\omega=2 \pi$.
- The frequency respons need only be plotted for $0 \leq \omega \leq \pi$ (frequency response repeats every 2π.
- The unit circle, $\mathrm{e}^{\mathrm{j} \omega}$, is used to determine the frequency response of a system that has it's input and output as a series of numbers.
- (The magnitude is represented by the product of the lengths of the zero-vectors divided by the product of the lengths of the pole-vectors.
- The phase is calculated using addition and subtraction)

Frequency response

- The frequency response of discrete-time filters are similar to the response of continuous-time filters. The poles and zeroes are located in the z-plane instead of the s-plane
- $D C / 2 \pi$ equals $z=1, f s / 2$ equals $z=-1$
- The response is periodic with period 2π

Stability of Discrete-Time Filters

- The filters are described by finite difference equations

$$
y(n+1)=b x(n)+a y(n)
$$

- In the z-domain:

$$
\begin{aligned}
& \mathrm{zY}(\mathrm{z})=\mathrm{bX}(\mathrm{z})+\mathrm{aY}(\mathrm{z}) \\
& \mathrm{H}(\mathrm{z}) \equiv \frac{\mathrm{Y}(\mathrm{z})}{\mathrm{X}(\mathrm{z})}=\frac{\mathrm{b}}{\mathrm{z}-\mathrm{a}}
\end{aligned}
$$

- $\mathrm{H}(\mathrm{z})$ has a pole in $\mathrm{z}=\mathrm{a}$. $\mathrm{a}<=1$ to ensure stability
- In general a LTI system is stable if all the poles are located inside or on the unit circle

Test for stability

- Let the input, $x(n)$ be an impulse signal (i.e. 1 for $n=0$, and otherwise), which gives the following output signal, according to $9.25, y(0)=k$, where k is some arbitrary initial state for y.
- $y(n+1)=b x(n)+a y(n)$
- $y(0+1)=b x(0)+a y(0)=b 1+a k=b+a k$,
- $y(2)=b x(1)+a y(1)=b+a(b+a k)=a b+a^{2} k$
- $Y(3)=b x(2)+a y(2)=b 0+a y(2)=a\left(a b+a^{2} k\right)=a^{2} b+a^{3} k$
- $Y(4)=a^{3} b+a^{4} k$
- Response, $h(n)=0$ for $(\mathrm{n}<0)$,
- $\quad k$ for $(n=0)$
- $\quad\left(a^{n-1} b+a^{n} k\right)$ for $n>=1$
- This response remains bounded only when $|\mathrm{a}|<=1$ for this 1 st order filter, and unbounded otherwise.
- In general, an arbitrary, time invariant, discrete time filter, $\mathrm{H}(\mathrm{z})$, is stable if, and only if, all its poles are located within the unit circle.

ef

IIR and FIR Filters

- Infinite Impulse Response (IIR) filters are discretetime filters whose outputs remain non-zero when excited by an impulse:
- Can be more efficient
- Finite precision arithmetic may cause limit-cycle oscillations
- Finite Impulse Response (FIR) filters are discretetime filters whose outputs goes precisely to zero after a finite delay:
- Poles only in $z=0$
- Always stable
- Exact linear phase filters may be designed
- High order often required

Bilinear Transform

- In many cases it is desirable to convert a continuous-time filter into a discrete-time filter or vice-versa.
- $H_{c}(p)$ is a CT transfer function with $p=\sigma_{p}+j \Omega$.Then

$$
\mathrm{p}=\frac{\mathrm{z}-1}{\mathrm{z}+1} \quad \mathrm{z}=\frac{1+\mathrm{p}}{1-\mathrm{p}}
$$

- The bilinear transforms map the z-plane locations of $1(\mathrm{DC})$ and $-1(\mathrm{fs} / 2)$ to the p -plane locations 0 and ∞.

Bilinear Transform

- The unit-circle $z=e^{j_{\omega}}$ in the z-plane is mapped to the entire $j \Omega$-axis in the p-plane:

$$
\begin{aligned}
\mathrm{p} & =\frac{\mathrm{e}^{\mathrm{j} \omega}-1}{e^{\mathrm{j} \omega}+1}=\frac{\mathrm{e}^{\mathrm{j}(\omega / 2)}\left(\mathrm{e}^{\mathrm{j}(\omega / 2)}-\mathrm{e}^{-\mathrm{j}(\omega / 2)}\right)}{\mathrm{e}^{\mathrm{j}(\omega / 2)}\left(\mathrm{e}^{\mathrm{j}(\omega / 2)}+\mathrm{e}^{-\mathrm{j}(\omega / 2)}\right)} \\
& =\frac{2 \mathrm{j} \sin (\omega / 2)}{2 \cos (\omega / 2)}=j \tan (\omega / 2)
\end{aligned}
$$

- The following frequency mapping occurs:

$$
\Omega=\tan (\omega / 2)
$$

- Then $\mathrm{H}(\mathrm{z}) \equiv \mathrm{H}_{\mathrm{c}}((\mathrm{z}-1) /(\mathrm{z}+1))$ and $\mathrm{H}\left(\mathrm{e}^{\left.\mathrm{j}^{\mathrm{j}}\right)}\right)=\mathrm{H}_{\mathrm{c}}(\mathrm{j} \tan (\omega / 2))$

Sample-and-Hold Response ${ }_{(1 / 3)}$

- A sampled and held signal is related to the sampled continuous-time signal as follows:

$$
x_{s f(t)}=\sum_{n=-\infty}^{\infty} x_{c}(n T)[9(t-n T)-\vartheta(t-n T-T)]
$$

- Taking the Laplace-transform:

$$
X_{s h}(s)=\frac{1-e^{-s T}}{s} \sum_{n=-\infty}^{\infty} x_{c}(n T) e^{-s n T}
$$

$$
=\frac{1-\mathrm{e}^{\mathrm{sT}}}{\mathrm{~s}} \mathrm{X}_{\mathrm{s}}(\mathrm{~s})
$$

Sample-and-Hold Response
 (2/3)

- The hold transfer function $\mathrm{H}_{\mathrm{sh}}(\mathrm{s})$ is due to the previous result equal to:

$$
\mathrm{H}_{\mathrm{sh}}(\mathrm{~s})=\frac{1-\mathrm{e}^{-\mathrm{sT}}}{\mathrm{~s}}
$$

- The spectrum is found by setting $\mathrm{s}=\mathrm{j} \omega$:

$$
H_{s h}(j \omega)=\frac{1-e^{-j_{\omega} T}}{j_{\omega}}=T \times e^{-\frac{j_{\omega} T}{2}} \times \frac{\sin \left(\frac{\omega T}{2}\right)}{\left(\frac{\omega T}{2}\right)}
$$

- Finally the magnitude is given by:

- This response $\sin (x) / x$ is usually referred to as the sincresponse.

Sample-and-Hold Response

- Shaping only occurs for continuous-time signals, since a sampled signal will not be affected by the hold function.
- A S/H before an A/D converter does not reduce the demand of an anti-aliasing filter preceeding the A/D-converter, but simply allow the A/D to have a constant input value during the conversion.

Tuesday 16th of February:

- Discrete Time Signals (from chapter 9)

Today: as far as we get with:

Chapter10 Switched Capacitor Circuits
10.1 Basic building blocks (Opamps, Capacitors, Switches, Nonoverlappingg clocks)
10.2 Basic operation and analysis (Resistor equivalence of a Switched Capacitor, Parasitic Insensitive Integrators)

Figure 1. A typial fully diflecential SC inceprator. C-ucon-monomone

Effect of the Integrator Settling Behavior on SC £ \triangle Modulator Characteristics: a Theoretical Study

Properties of SC circuits

- Popular due to accurate frequency response, good linearity and dynamic range
- Easily analyzed with z-transform
- Typically require aliasing and smoothing filters
- Accuracy is obtained since filter coefficients are determined from capacitance ratios, and relative matching is good in CMOS
- The overall frequency response remains a function of the clock, and the frequency may be set very precisely through the use of a crystal oscillator
- SC-techniques may be used to realize other signal processing blocks like for example gain stages, voltage-controlled oscillators and modulators
(a)

UNIVERSITETET I OSLO

Basic building blocks in SC circuits; Opamps, capacitors, switches, clock generators (chapter 10.1)

- DC gain typically in the order of 40 to $80 \mathrm{~dB}(100-10000 \mathrm{x})$
- Unity gain frequency should be $>5 \times$ clock speed (rule of thumb)
- Phase margin > 70 degrees (according to Johns \& Martin)
- Unity-gain and phase margin highly dependent on the load capacitance, in SC-circuits. In single stage opamps a doubling of the load capacitance halves the unity gain frequency and improve the phase margin
- The finite slew rate may limit the upper clock speed.
- Nonzero DC offset can result in a high output dc offset, depending on the topology chosen, especially if correlated double sampling is not used

Basic building blocks in SC circuits; Opamps, capacitors, switches, clock generators

- Desired: very high off-resistance (to avoid leakage), relatively Iow on-resistance (for fast settling), no offset
- Phi, the clock signal, switches between the power supply levels
- Convention: Phi is high means that the switch is on (shorted)
- Transmission gate switches may increase the signal range
- Some nonideal effects: nonlinear capacitance on each side of the switch, charge injection, capacitive coupling to each side

ef

Basic building blocks in SC circuits; Opamps, capacitors, switches, clock generators

- Must be nonoverlapping; at no time both signals can be high
- Convention in "Johns \& Martin"; sampling numbers are integer values
- Location of clock edges need only be moderately controlled (assuming low-jitter sample-and-holds on input and output of the overall circuit)
- Delay elements above can be an even number of inverters or an RC network

C1 is first charged to V1 and then charged to V2 during one clock cycle

$$
\Delta \mathrm{Q}_{1}=\mathrm{C}_{1}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)
$$

The average current is then given by the change in charge during one cycle

$$
I_{\text {avg }}=\frac{C_{1}\left(V_{1}-V_{2}\right)}{T}
$$

Where T is the clock period (1/fs)

¿fj

SC Resistor Equivalent (2n)

The current through an equivalent resistor is given by:

Combining the previous equation with lavg

$$
I_{e q}=\frac{V_{1}-V_{2}}{R_{e q}}
$$

The resistor equivalence is valid when fs is much larger than the signal frequency. In the case of higher signal frequencies, z-domain analysis is required :

$$
\mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{T}}{\mathrm{C}_{1}}=\frac{1}{\mathrm{C}_{1} \mathrm{f}_{\mathrm{s}}}
$$

Example of resistor implementation

- What is the resistance of a 5 pF capacitance sampled at a clock frequency of 100 kHz ?
- Note the large resistance that can be implemented. Implemented in CMOS it would take a large area for a plain resistor of the same resistance

$$
\mathrm{R}_{\mathrm{eq}}=\frac{1}{\left(5 \times 10^{-12}\right)\left(100 \times 10^{3}\right)}=2 \mathrm{M} \Omega
$$

Frequency response (Low frequency) (1/2)

$$
\begin{gathered}
H(z)=-\left(\frac{C_{1}}{C_{2}}\right) \frac{z^{-1 / 2}}{z^{1 / 2}-z^{-1 / 2}} \\
z=e^{j} \omega^{T}=\cos (\omega T)+j \sin (\omega T) \\
z^{1 / 2}=\cos \left(\frac{\omega T}{2}\right)+j \sin \left(\frac{\omega T}{2}\right) \\
z^{-1 / 2}=\cos \left(\frac{\omega T}{2}\right)-j \sin \left(\frac{\omega T}{2}\right) \\
H\left(e^{j_{\omega} T}\right)=-\left(\frac{C_{1}}{C_{2}}\right) \frac{\cos \left(\frac{\omega T}{2}\right)-j \sin \left(\frac{\omega T}{2}\right)}{j 2 \sin \left(\frac{\omega T}{2}\right)}
\end{gathered}
$$

Example 10.2 (2/2)

- Assuming low frequency i.e.

$$
\omega \mathrm{T}<1
$$

- The gain-constant is depending only on the capacitor-ratio and clock frequency:

$$
\begin{gathered}
\mathrm{H}\left(\mathrm{e}^{\mathrm{j}^{\mathrm{T}} \mathrm{~T}}\right) \cong-\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}} \frac{1}{\mathrm{j} \omega \mathrm{~T}}\right. \\
\mathrm{K}_{\mathrm{I}} \cong \frac{\mathrm{C}_{1}}{} \frac{1}{\mathrm{C}_{2} \mathrm{~T}}
\end{gathered}
$$

Effect of parasitic capacitors

$$
\mathrm{H}(\mathrm{z})=-\left(\frac{\mathrm{C}_{1}+\mathrm{C}_{\mathrm{p} 1}}{\mathrm{C}_{2}}\right) \frac{1}{\mathrm{z}-1}
$$

- The gain coefficient depends on the parasitic and possibly non-linear capacitance
(iv) universitetet I OSLO

Parasitic-Insensitive Integrator

- The following parāsitics does not influence:
- Cp2 is either connected to virtual ground or physical ground
- Cp3 is connected to virtual ground
- Cp4 is driven by the output
- Cp1 is charged between vi(n) and gnd, and does not affect charge on C_{1}

Parasitic-Insensitive Integrator

$\mathrm{v}_{\mathrm{i}}(\mathrm{n})=\mathrm{v}_{\mathrm{ci}}(\mathrm{nT})$

- Two additional switches removes sensitivity to parasitics
- Improved linearity
- More well-defined and accurate transfer-functions

Transfer function not dependent on Cp1:

Parasitic-Insensitive Integrator (fig. 10.9)

$$
\mathrm{H}(\mathrm{z}) \equiv \frac{\mathrm{V}_{\mathrm{o}}(\mathrm{z})}{\mathrm{V}_{\mathrm{i}}(\mathrm{z})}=\left(\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}\right) \frac{1}{\mathrm{z}-1}
$$

- Note that the integrator is now positive
- C_{1} and C_{2} no longer need to be much larger than parasitics
- A remaining limitation is the lateral stray capacitance between the lines leading to the electrodes of C_{1} and C_{2}. This can be reduced by inserting a grounded line between the leads. In any case the minimum permissible C_{1} and C_{2} values are reduced by a factor $10-50$ if the stray-insensitive configuration is used, hence reducing the area required by the capacitors is reduced by the same factor [GrTe86]. Price is proportional to area.
- While parasitics do not affect the discrete time difference equation (or $\mathrm{H}(\mathrm{z})$), they may slow down settling time behaviour.

$\mathrm{H}(\mathrm{z})$ for inverting, delay-free integrator

- Equations similar to previous slide, but with clocking- and timing convention as in fig. 10.3:

$$
\begin{gathered}
\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT}-\mathrm{T} / 2)=\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT}-\mathrm{T}) \\
\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT})=\mathrm{C}_{2} \mathrm{v}_{\mathrm{co}}(\mathrm{nT}-\mathrm{T} / 2)-\mathrm{C}_{1} \mathrm{v}_{\mathrm{ci}}(\mathrm{nT})
\end{gathered}
$$

- $H(z)$ having z^{-1} removed: $\quad H(z)=\frac{V_{0}(z)}{V_{i}(z)}=-\left(\frac{C_{1}}{C_{2}} \frac{z}{z-1}\right.$

Next time, Tuesday the 23rd

- Rest of chapter 10. (10.3, 10.4, 10.5, 10.7)
- Chapter 11, Data Converter Fundamentals
- Additional litterature (chapter 9 and 10):
- "Sedra \& Smith"
- Franklin W. Kuo (FYS3220 (?))
- Nils Haaheim, Analog CMOS
- Basic Electrical Engineering, Schaum's outlines

