Jp.

Discrete Time Signals and Switched Capacitor Circuits
(rest of chapter 9 + 10.1, 10.2)

Tuesday 16th of February, 2010, 9:15 — 11:45

»

Last time — Tuesday 9th of February, and today, February the 16th:

» 8.5 Bandgap Voltage Reference Basics
8.6 Circuits for Bandgap References

» Chapter 9 Discrete-Time Signals

* 9.1 Overview of some signal spectra

9.2 Laplace Transforms of Discrete-Time
Signals

9.2-9.6
10.1-10.2 (10.3((?)))

2/16/2010



CA; (%) plotkedd

U(e) 75 efinedt fo e the
.

fmc Lon Cavtn 2 |
_ ,I( t = 0)
£ <o)
L o ]
e P prtac A od
tom binedion ot
pbas (k)

S gy Lo - i'. uwhae Siamad

Y { DL g VoTe

(e ~aT) 1 (L -nT~7))

W€ Cain  Mow wntx

Ly (k) =

ainy = X, (wTh
~
1 .
.
f S
_[' R B T T T > n
i " |
T hea Harals G
- ) -
all 4 < S0 Tliaf

2/16/2010



2/16/2010

- z 1 i ) %
% ( 5) T (i e L T
/ %o i = ,__:_ I'._ e I| Xe e
A B !
Sinte X *) 75 a b rpcar

low Dindiun ot X c {.:- \ | we eloo
]

n
Nt €
- # T L=
v f | —£ . L - Sn T
/ { 29 2= ¥ B g (wT ) =
£ g \ v i .
‘ull A= =
\ 1 ! | ]
I LA = MAe TLn he o iy
'-‘.\b\'-um\fvl-'\ 0 b s - Uanat LA o0 AV
\ il
Mags cene
- ~_
A X v c ! &
| 1 -1 ) LN =

s(e)
p?toni:uﬂ‘m B gf:.EMi:TQAgiG:N.;DLSE%RE e "‘Mﬂf—?@
g X (s = =§ <o (n"')c-hf where Sy 75 B mpube
nTe ,[‘,thgdn (pita ¢ Veta Fuuc.)
The et o e Sumpted LTS wek knawm Ehek K
ﬁﬁﬁa’&; ﬂsasJ Cam  be  Avaeel Foion A cform of =
oy rplacing s by G O, prodlc mpdse doin TS
B wore 'm'\u;:’tz\fc_ C‘__P{"_"‘f“"h ’|s'f.u Gunoklar~  parioddc lMl’Jh)‘&-L’haJ{b\/

o R = ) - 2n
receth Maosk |14 (j[m\_ h( \(,-,\.):..{ \!_; (.19) \SCJ"”\ ~ 210 2‘8((,\;- k.- )

. e - -T
. H‘{I"ﬁ —a Sy T e + Pt
\Elnc — 2’ %:‘\ . [ l‘t ~ G_j (,5():.{.;*{”\ -J"{‘ sit\)
Ugin s c"d-) or -'10‘]&; 1" 4.8) " el 2
(G > b wrltew 28 dhe rmmt w""’h"‘j ( £) tn s ‘F”: “‘“"j st
| A
kg () = x Ay sy (a8 (W0 X (Gwy= =X (fw) e SGw)
w clky T¢ a uv_ﬁodiLFJ/n_
Lwin  ©F
‘S-({'.)—_. Z'S(t"".r)

ne =0

‘ 1 0SLO




}C’s(jw\ = -_S-n o (jw\ ® S(ju—!) "

_ % J_HJ_I_LLLL (I
?w) pl—l“{"*(‘h/\:xns TS comdolidion * 4]|]I|1;]| 1““““;”[””“

exXar Mc..{']ru,mwta.ll-ﬁ or m . | X I | ¥ I
gmplrviccd)j)—[yu. ESI‘)-CL‘!"““M of “ ! l " 1 | !!dl'r

Figer 2.10: Grafisk fremstilling av ipling, i tids- og frek
Kol an be scun o be

8{‘“}& ‘?j\ - (a 12) Cah“(ers o c,uc,m_[;tk
I . AT ey o 3 ) rmmn For L (@ sh
K (Jw) = 5 55{ QU—‘ = ) (any T?TRT:TS_ G S( | Showm

PR I Nete ’t'ﬂd? for a eiscredy.
R i stnal | X, (02 X, (43kd)
| E Whe e k RS ay m‘mj
/<$‘ ('F‘] = —-__r 2 X ( 2’110—kalﬂ-r )(ﬂili) iu-i’tc?_r fa Seean rO\J Su..‘a!‘fﬂ-&“
LS i (3,
AL Gad Y Thew dhek Hw {fﬁua‘wm
for A Sﬁmrr(.td S;Kmqii xs({) cq’uaio

o Fuiaa 0{ 8"'\"‘&1‘4 ehne u‘f v C{'_)
No aliasing cceen if )< Gw) 13 F’kaﬂamd‘-i o 4‘3

- B “
413 2 - TRAmSEogm PPEFR 0n Jam

-l
G sy =2 ke (Y™ A 22T
-

=]

(Gllf) K(—Z! = z e (b\‘T )!_"‘ v dhe ;z_m,\s-g.-.\,\ af Hoo &MF{{" "Q("'T)

n2-co -

Two ?E‘u?E’\‘antg ch,d..,\'{,_d am_\ Leplace 4 Pm[,v{fza :

D) %y e X(@) them K(n-ky €D 2 -}Z(as

2.} Cénu_ Tn Lo ‘LTW'\‘L elomacs o Eﬁ‘ﬁ‘“—l'l bv\l-ut-* -N'\ Yo 'Fr(_ﬁ ola mada
Mulkt, — I
14 yln) = h(n) @ < () e Y2\ = By X

=i Coway;

W o—

Note et Z(_z; TS met & funcHon of b Sa_w\rrbtux:) rade
buk f»\\‘} + o nuwloers ok, (wT) .

The ga‘hu <(w)y g S?M{:LJ @ ke of  nunars
blhat wm,j (br sy mo-i:) lhew e been,  oslateiinad L:‘Lﬁ
Bt

2/16/2010



2/16/2010

b

ln) 15 Simply a S of nwmbers._ (pe 39

One way of —Fiﬁaanj abok  His Sules o e
75 Ahes  the orglnal  Sempl {?w_}-r) has  beem
cﬁcaﬂVfrfy nermetiqec 4o .

Th+ Scws«j JMJTI—';»; Ao Satca-{-mL rledlcnm  hefween

Ry (B anet ch,g Shown in F3.9.2

From Hg. 2T Lelobonship bebween
ﬂ\ A [ S Xehy anet Xy

+2
-?—Hf
/\/\ At eraafively !
ﬁTT*‘_» m © ZTI?P
5 =
- +
W RLGnS <
Y/ Stmple At Nyguist e
= ROf _2MF_ fﬂ.“ﬂ‘}
[y B

Contlnwong —{?ML Tketiz
‘Y : cﬁ"lag/fccamd ('H%> V{
‘T
W dians /fuplc B U

Ko f5. 9.4 Normell, disacte Adme 4’ Ak = qua_
ST v\Q.J.Q Grt  defined o '
heve. ﬁlﬂ-&h‘znf-ﬂmfﬁm The Sna’\-\ﬁt{. d’\c\.x-\%,m X

an s
only  bekween T andT) e | Medians  bebwcen €ach fame]
T b Cuedn o mge.rc{c-hmr_
X() X(n) st SV\M Te C-’—'\-'F\ el e hage
T rad
O ,Y-n_ g v =] F‘ —_—
. . f‘ SR . Camply]
i 3 i
3 0 i N : _ .
ot - D1§C.Kj‘c ‘-L\M'(_
0 rad/sample = 0 cycles/sample =/8 rad/sample = 1/16 cycles/sample ] g‘r el Crc V\c-+

“ | Unmgque Sinee tha

\ A\ A\ /’\ ; cdXionm of 2T resulds
Is | yy\ "U"\i Q‘\W\'\. Ay V\Q—’L

x(n)

T 10 J/ n W W W W ?Of" c(&m()‘bg [=% C’\-«gcr\r_gt —ine
<= SpasA Mu.u\.b a J,‘Kﬁ of _Tlru

J ns.dzwuce.{ 1t ted of AT md
q Eample

/4 rad/sample = 1/8 cycles/sample =2 rad/sample = 1/4 cycles/sample




TY DowNCAMPLING  AUp  UPSAMPLING

DAV SAMPLING To  modue The Sumple reda (m’.wm}’,n-{am_ L:.:s)

UPSAMP L i~ L Lo Twertase — || -
i e e
POW rRISAMPLING ' ‘1 P : Illllllli PN r&){(’o tan he
achieyed by ° % i & aau.eu<¢k)5¢
kf.tpfv\j evecy R Wese, & IM:“‘S
Lt sample aad Lz“ll g A
discording the 1 (omSidace el ol
obhers . l s
y |
Ny = l T =¥
FREGLENCY DomAIN - E.'lrw’a{“:..k sl?.{o{v:_ expanaed byl ‘%:,‘ {'.;1 "
p;].‘%qol
5|{,uﬁi\|_ rMusT
o E&FL::D;Q‘TE
i 2 [E1] EFORE Pouns,
‘ ! I Al W RoiuiR

LRCAMELING, — incrcasing b effechue £ ()

BT R R b

UI’S”‘MW"‘ﬁ T e o..(_cf,m{;L(jhguL T.v\SQr{-}p\j L-1 2ero veluwg
beAw € cin Sunples (a; SHowin T {;S,qq)
- The specknn ef 4he

rloulting  wp SC‘MPQJ\
Siened “are idad{ecd

> m N %oémﬂw one Tweak

BN

— . n i aaranen > 9
UJ/ o M/L STgmad Db withs
o~ tenovwaelization
atuv\j dhe hqu&‘,wﬁj
M /\/\ M /V\ exlS

o , = Whew o sijmfk S

| > T »
0 %" 2n n 2 © h.?%t«M[:\t"L bj [ )

’ Yo freguency axis
T8 Scalect bj L Sucly
Theat 0] wvow oconms
where L2710 vecurcd

T A r.‘.;r:ti);wal s[ij

. UNIVERSITETET

© 1 0SLO

2/16/2010



9.5 Discrete-Time Filters (pp. 382 in “J&M”)

u(n) —P H( Z) > y(Il)

(ym equals nm) if wm 1san impulse)

(Discrete-time filter)

* An input series of numbers is applied to a filter to
create a modified output series of numbers

* Discrete-time filters are most often analyzed and
visualized in terms of the z-transform

* In this figure (Fig. 9.9) the output signal is defined to
be the impulse response, h(n), when the input, u(n), is
an impulse (i.e. 1 for n = 0 and 0 otherwise. Transfer

function; H(z) being the z-transform of the impulse
response, h(n

Continuous time LP-filter
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Discrete-Time Transfer Function

» Assume the following (LP-) transfer function: . zplane
1
0,05
Hz) = 94— .l e
z — 1,62+ 0,65 %z X
* Poles: Complex conjugated at 0.8+/-0.1j T

» Zeros: Two zeros at infinity (Defined). The number of zeros at infinity reflects the
difference in order between denominator and nominator

¢ In the discrete time somain z=1 corresponds to the freq. response at both dc (o= 0)
and o = 2m.

* The frequency respons need only be plotted for 0 < @ < & (frequency response
repeats every 2.

e The unit circle, €l , is used to determine the frequency response of a system that
has it’s input and output as a series of numbers.

* (The magnitude is represented by the product of the lengths of the zero-vectors
divided by the product of the lengths of the pole-vectors.

* The phase is calculated using addition and subtraction)

UNIVERSITETET

Frequency response

'\high—frequency o =i s o z-plane
i1 . et

-1 4 Va

X —»
"

(poles) jo=0 g

* The frequency response of discrete-time filters are similar to
the response of continuous-time filters. The poles and zeroes
are located in the z-plane instead of the s-plane

* DC/2r equals z=1, fs/2 equals z=-1
» The response is periodic with period 2n
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Stability of Discrete-Time Filters

y(n+1)
b

X(n) o—)—»@—b 7! > y®

a

* The filters are described by finite difference
equations y(n+1) = bx(n)+ ay(n)

. ) . zY(z) = bX(2) +aY(z)
In the z-domain: oy 2 YO b

X(Z) zZ—a
* H(z) has a pole in z=a. a<=1 to ensure stability
* In general a LTI system is stable if all the poles are
located inside or on the unit circle




Test for stability

Let the input, x(n) be an impulse signal (i.e. 1 for n=0, and
otherwise), which gives the following output signal, according to
9.25, =k, where k is some arbitrary initial state fory.
y(n+1)=bx(n) + ay(n)
y(0+1) =b x(0) + a =b1l+ak=b+ak,
y(2)=bx(1)+ay(l)=b +a(b+ak)=ab+a%
Y@B)=bx(2)+ay(2)=b0+ay(2) =a(ab + a%k) = a%b +a3k
Y(4) = a%b +a*k
Response, h(n) = 0 for (n < 0),

k for (n=0)

(a™b+a"k) for n>=1
This response remains bounded only when |a|<=1 for this 1st
order filter, and unbounded otherwise.

In general, an arbitrary, time invariant, discrete time filter, H(z), is
stable if, and only if, all its poles are located within the unit circle.

UNIVERSITETET

I OSLO

IR and FIR Filters

* Infinite Impulse Response (IIR) filters are discrete-
time filters whose outputs remain non-zero when

excited by an impulse:

» Can be more efficient

 Finite precision arithmetic may cause limit-cycle
oscillations

* Finite Impulse Response (FIR) filters are discrete-
time filters whose outputs goes precisely to zero after
a finite delay:

* Poles only in z=0

» Always stable

» Exact linear phase filters may be designed

» High order often required

2/16/2010
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Bilinear transform

Blineer 4

Bilinear Transform

* In many cases it is desirable to convert a
continuous-time filter into a discrete-time filter
or vice-versa.

e H(p) Is a CT transfer function withp = op+iQ

.Then

, = Lfp
l-p

_z—1
S|
* The bilinear transforms map the z-plane
locations of 1(DC) and -1(fs/2) to the p-plane
locations 0 and o .

4}‘ UNIVERSITETET
s
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Bilinear Transform

e The unit-circle z= ¢ inthe z-plane is mapped
to the entire jQ2-axis in the p-plane:
do_1 e gl

)

ej(m/Z) j(m/2)+e*j(o)/2)

(€

o+ 1

_ 2jsin(w/2) _
2cos(w/2) jtan(w/2)

 The following frequency mapping occurs:
Q= tan((o /2)

e Then H(z) =H((z— 1)/(z+ 1)) and HE*) = H (jtan(w/2))

Sample-and-Hold Response ws

» A sampled and held signal is related to the
sampled continuous-time signal as follows:
X = Y XN D[9(t—nT) - §(t—nT-T)]

n=-—g

* Taking the Laplace-transform:

—sT

1— —snT
Xap(®) = —=— 3 xenTe
n=—g

sT
1-¢ Xs)

S

2/16/2010
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Sample-and-Hold Response .s

 The hold transfer function Hg,(s) is due to the

previous result equal to: wed

1—e¢
Hsh(s) = s

» The spectrum is found by setting s=jm:

* Finally the magnitude is given by:

| |sin|’“_ﬁi
|S““‘TTT’I| [Hy (0] = T Tf
B ]

[Hydi)| = T

* This response sin(x)/x is usually referred to as the sinc-
response.

Sample-and-Hold Response @5
|Hsh(jm)|

o f
_3fv _2f\ _fs (I) fS sz 3fs

« Shaping only occurs for continuous-time /{,\
signals, since a sampled signal will not . /V\ /V\ .
be affected by the hold function. \ ’ ’

* A S/H before an A/D converter does not /*\ /V\ /v‘\
reduce the demand of an anti-aliasing o
filter preceeding the A/D-converter, but )
simply allow the A/D to have a constant /i\ o

rA'aN PN N
i, 2,

input value during the conversion. i

frequency

2/16/2010
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Tuesday 16th of February:

« Discrete Time Signals (from chapter 9)

¥|
H|
£

g™ Q'ﬁ:~ﬂ‘4‘ M

Today: as far as we get with: ) — |
Chapter10 Switched Capacitor Circuits™ ="

10.1 Basic building blocks (Opamps, s
Capacitors, Switches, B e ph
Nonoverlappingg clocks) M S .

10.2 Basic operation and analysis i e %

(Resistor equivalence of a Switched " sss
Capacitor, Parasitic Insensitive
| nteg rato rS) Effect of the In

EA Modulator Characteri

ing Behavior on SC
coretical Study

Properties of SC circuits
» Popular due to accurate frequency response, good linearity
and dynamic range
* Easily analyzed with z-transform
* Typically require aliasing and smoothing filters

» Accuracy is obtained since filter coefficients are determined
from capacitance ratios, and relative matching is good in
CMOS

» The overall frequency response remains a function of the
clock, and the frequency may be set very precisely through the
use of a crystal oscillator

» SC-techniques may be used to realize other signal processing
blocks like for example gain stages, voltage-controlled
oscillators and modulators

2/16/2010
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Basic building blocks in SC circuits; Opamps, capacitors, switches, clock
generators (chapter 10.1)

» DC gain typically in the order of 40 to 80 dB (100 — 10000 x)

* Unity gain frequency should be > 5 x clock speed (rule of
thumb)

* Phase margin > 70 degrees (according to Johns & Matrtin)

* Unity-gain and phase margin highly dependent on the load
capacitance, in SC-circuits. In single stage opamps a
doubling of the load capacitance halves the unity gain
frequency and improve the phase margin

* The finite slew rate may limit the upper clock speed.

* Nonzero DC offset can result in a high output dc offset,
depending on the topology chosen, especially if correlated
double sampling is not used

Basic building blocks in SC circuits; Opamps,
capacitors, switches, clock generators

metal metal

C
polyl
| ‘i/ m—
Cn - thin oxide

= bottom plate
poly2 / J_ Cp2  thick oxide P

|

1

“1 1o Il ']

equivalent circuit

]

I

cross-section view

* Typically constructed between two polysilicon layers

* Parasitics; Cp1, Cp2.

 Parasitic Cp2 may be as large as 20 % of the
desired, C1

* Cp1 typically 1- 5 % of C1. Therefore, the equivalent model
contain 3 capacitors

2/16/2010
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Basic building blocks in SC circuits;
Opamps, capacitors, switches, clock generators

o
Symbol 1 1 n-channel
[ Ve dL o v,

) transmission
0 ¢ gate
N Saa
)

 Desired: very high off-resistance (to avoid leakage), relatively low
on-resistance (for fast settling), no offset

Phi, the clock signal, switches between the power supply levels

» Convention: Phi is high means that the switch is on (shorted)

» Transmission gate switches may increase the signal range

* Some nonideal effects: nonlinear capacitance on each side of the
switch, charge injection, capacitive coupling to each side

UNIVERSITETET

I OSLO

Basic building blocks in SC circuits;
Opamps, capacitors, switches, clock generators

» Must be nonoverlapping; at no time both signals can be high

» Convention in "Johns & Martin”; sampling numbers are
integer values

* Location of clock edges need only be moderately controlled
(assuming low-jitter sample-and-holds on input and output of
the overall circuit)

 Delay elements above can be an even number of inverters or
an RC network

2/16/2010
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SC Resistor Equivalent w»

o L) R
L L

eq
2 D_'rr_ljr_,, v, Vi Mh—o V2

=
I
Ol

AQ = C(V, V) every clock period @

Q, = C.\V

X ' X

C1is first charged to V1 and then charged to V2 during one clock cycle
AQ; = C (V- V2)

The average current is then given by the change in charge during one cycle

Ci(Vi-Vy)
avg — T

Where T is the clock period (1/fs)

UNIVERSITETET

SC Resistor Equivalent e

L L) R
= v " \
Vi D_-’_LI_-H-_,, v, to—W—o ™2

AQ = € (V, V) every clock period «

The current through an equivalent resistor is given by:
Combining the previous equation with lavg:

V-V,
qu = Req

The resistor equivalence is valid when fs is much larger than the signal
frequency. In the case of higher signal frequencies, z-domain analysis is
required : X __1

chE1

C\f,

UNIVERSITETET
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Example of resistor implementation

* What is the resistance of a 5 pF capacitance
sampled at a clock frequency of 100 kHz?

* Note the large resistance that can be implemented.
Implemented in CMOS it would take a large area for
a plain resistor of the same resistance

1
T 5x107)(10x10°)

= 2MD)

4}" UNIVERSITETET
s

wU¥ . 10SLO

An inverting integrator

Vci(t) Vco(t) —
¥ o J
v
cl

v(n) = v (nT) - — vo(n) = VCO(HT)

4}" UNIVERSITETET
s

wU¥ . 10SLO
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Example waveforms. H(z) rewritten to eliminate terms of z
having negative powers. Equation representative just before
end of phil only

V(@) Ch 1
" Ho=9v5 = ’(6'2)2 _1
3%
V.0
\\
\\

Frequency response (Low frequency) )

e (Cl) 12
Z = e .
C,/72— 712
z = eloT = cos(T) +jsin(wT)
zl/2 = cos(ﬂ)-*-jsin(ﬂ)
2 2
7712 = cos(m—'r)—jsm(w—T)
2 2

H(eij) ) (g_l)cos(%T)—jsin(%T)

G
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Example 10.2 (2/2)

* Assuming low frequency i.e.

ol «l

» The gain-constant is depending only on the
capacitor-ratio and clock frequency:

Parasitics reducing accuracy and performance
c, * Parasitics added
¢ C,; the one that is harmful, as
ST Tem accurate discrete-time
) frequency responses
depends on precise matching
of capacitors, (sometimes

4 down to 0.1 percent)

" 7™ C,; 1-5 % of C1 (page 396)

» Gain coefficient related to
Cp1 Which is not well
controlled and partly
nonlinear—> larger area

z—1

4}‘ UNIVERSITETET
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Effect of parasitic capacitors

He) = {CL L

v ()

» The gain coefficient depends on the parasitic and
possibly non-linear capacitance

™. M
& c 1’2- I( )
o L ' AL j\_
e UV o .
H%\ /FM b
S Il

 The following parasitics does not influence:
e Cp2 is either connected to virtual ground or physical ground
e Cp3is connected to virtual ground
e Cp4 is driven by the output
e Cplis charged between vi(n) and gnd, and does not affect charge
on C,
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Parasitic-Insensitive Integrator

CZ
é o I(
o ’ \
1 . L3
v,0 Vo, ® 1
o _J_
ke _I I_ o

V‘(ﬂ) = VC‘(HT) — vo(n) = vco(nT)

» Two additional switches removes sensitivity to
parasitics:
* Improved linearity
» More well-defined and accurate transfer-functions

Transfer function not dependent on Cpl:

@, 3. B HaS)
L N T
el S| EESS——— T |

| g | i e

RSITETET
0
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Parasitic-Insensitive Integrator (fig. 10.9)

o 6 | (
o i {
L L o
va® 3 v 0 L
o T
o F o

vl(n) = vc‘(nT) L L = va(n) = vm(nT)

Vo) AT
| | . Hi= v - ()L
 Note that the integrator is now positive Vi \GJz-1
» C, and C, no longer need to be much larger than parasitics
» Aremaining limitation is the lateral stray capacitance between the lines leading
to the electrodes of C; and C,. This can be reduced by inserting a grounded
line between the leads. In any case the minimum permissible C, and C, values
are reduced by a factor 10 — 50 if the stray-insensitive configuration is used,
hence reducing the area required by the capacitors is reduced by the same
factor [GrTe86]. Price is proportional to area.
» While parasitics do not affect the discrete time difference equation (or H(z)),
they may slow down settling time behaviour.

. UNIVERSITETET

0OSLO

H(z) for inverting, delay-free integrator

lnvee Fina " o

| fig b AT m Jam )
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Inverting delay-free integrator (fig. 10.12)

2

(|
U o 1
c 1 \
€1 L b
v L
0 vo(n)
CIE -,
2

V“(Z)

» Equations similar to previous slide, but with clocking- and
timing convention as in fig. 10.3:

Cyveo(mT=T72) = Covo(n'T-T)
Coveo(nT) = Cyveo(nT —T/2) — Cvei(nT)

. )
« H(z) having z'! removed: HO =5 - {E—Dj
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Next time, Tuesday the 23rd

 Rest of chapter 10. (10.3, 10.4, 10.5, 10.7)
» Chapter 11, Data Converter Fundamentals

« Additional litterature (chapter 9 and 10):

+ "Sedra & Smith”

+ Franklin W. Kuo (FYS3220 (?))

* Nils Haaheim, Analog CMOS

< Basic Electrical Engineering, Schaum'’s outlines

16. februar 2010
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