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Switched-Capacitor Circuits
(chapters 10.4, 10.5, 10.6, start of chapter 11 Data converter 

fundamentals)
Tuesday 23rd of February, 2010, 9:15-12:00

Snorre Aunet, sa@ifi.uio.no
Nanoelectronics Group, Dept. of Informatics

Office 3432

Last time – and today, Tuesday 23rd of February:
9.2 Laplace Transform of Discrete Time Signals
9.3 z-transform
9.4 downsampling and Upsampling
9.5 Discrete Time Filters
9.6 Sample-and-Hold Response

10.1 Switched Capacitor Circuits
10.2 Basic Operation and Analysis
Today:
10.3 First-order filters
10.4 Biquad filters (high-Q)
10.5 Charge injection
10 7 Correlated double sampling techniques10.7 Correlated double sampling techniques
11.1 Ideal D/A converter
11.2 Ideal A/D converter
11.3 quantization noise
11.4 signed codes
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Signal-flow-graph analysis (p. 407)

• Applying charge equations is tedious for 
larger circuits. Using some rules and 
signal-flow-graph analysis simplifies 
analysis and design of SC-circuits.

• Superposition (Wikipedia)In a linear 
th t t isystem, the net response at a given 

place and time caused by two or more 
independent stimuli is the sum of the 
responses which would have been 
caused by each stimulus individually.

Getting the transfer function..
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Signal Flow Graph (Fig. 10.13 in ”J & M”)
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First-Order Filters

• Select a known Active-RC circuit
• Replace resistors by SC-equivalents

A l i di i h d

Vin s( ) Vout s( )

• Analyze using discrete-time methods
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Making 1st order SC-filter from active RC equivalent

SFG based on superposition, similar as in fig 10.13.
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Switch sharing (p. 413)
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Fully Differential Filters (p. 414 (1/3))
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• The signal is represented by the difference of two voltages
• Most SC-designs are fully differential, typically operating 

around a dc common-mode voltage halfway between the 
supply voltages
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supply voltages 
• Reduced common-mode noise
• Cancellation of even-order harmonic distortion, if the 

nonlinearity is memoryless 

Differential implementation (fig. 10.18 p. 415)
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• First order fully differential filter – alternative to 
single-ended version in fig. 10.16
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Example: Fully differential SC-sigma-delta ADC published May 2007   

• Downloaded from IEEEXplore                                                   
( http://ieeexplore.ieee.org/Xplore/dynhome.jsp ) 

Properties of Fully Differential Filters, compared 
to single-ended solutions

• Requires two copies of a single-ended filter except from 
the Opamp which is shared

• Common mode feedback circuitry is required• Common-mode feedback circuitry is required
• The input- and output signal amplitude are doubled. The 

same dynamic range can be achieved with half-sized 
capacitors:

• Area reduction and less power consumption
• Reduced size of switches (less charge)

• More wires are required• More wires are required
• Improved performance with respect to noise and distortion
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Some Active RC 1st order filters (Sedra & Smith p. 779). 
Filter in fig 10.14 in ”Johns & Martin” lowermost.

High-Q Biquad active RC-filter

• Another circuit is required for high Q-values and 
small capacitor spread

• Q-damping is obtained by adding a capacitor around 
both integrators instead of a resistive feedback 
around the last integrator
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High-Q Switched-capacitor biquad filter (Fig. 10.25, p. 421) by 
changing the resistors with SC-equivalents

High-Q Biquad Filter
• General transfer function:

• The function can be rewritten as:

H z( )
Vo z( )

Vi z( )
-------------

K3z
2

K1K5 K2K5 2K3–+ z K3 K2K5– + +

z
2

K4K5 K5K6 2–+ z 1 K5K6– + +
-------------------------------------------------------------------------------------------------------------------–=

a2z
2

a1z a0+ +

• The coefficients are then:

H z( )
a2z a1z a0+ +

z
2

b1z b0+ +
------------------------------------–=

K1K5 a0 a1 a2+ +=

K2K5 a2 a0–=

K3 a2=

K4K5 1 b0 b1+ +=

1 b

• A signal-flow-graph approach is used to find the transfer function. There is some 
freedom in chossing the coefficients as there is one less equation than the 
number of coefficients. K4 = K5 = SQR (1+b0 + b1) defines the other ratios.

K5K6 1 b0–=
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Ex 10.5 1) BP-filter, peak gain 5 near fs/10 amd Q of about 10
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Charge Injection (chapter 10.5)
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• To reduce the effects of charge injection in SC circuits, realize 
all switches connected to ground or virtual ground as n-
channel switches only, and turn off the switches connected to 
ground or virtual ground first. Such an approach will minimize
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ground or virtual ground first. Such an approach will minimize 
distortion and gain error as well as keeping DC offset low.

• In this case 1a and 2a are turned off first to prevent other 
switches affecting the output voltage of the circuit. 
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Ex. 10.6  (1/2)
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Ex. 10.6  (2/2)
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Correlated Double Sampling (”CDS”)
• Used to realize highly accurate gain amplifiers, sample-and-

hold circuits and integrators to reduce errors due to offset 
voltages, 1/f noise and finite opamp gain.

• Method: During a calibration phase the input voltage of an g p p g
opamp is sampled and stored (accross a C) and later 
subtracted from the signal in the operational phase (when the 
output is being sampled), by appropriate switching of the 
capacitors.

• A detailed description is beyond the scope of the text in ”J & 
M”. The interested reader may check : C. G. Themes, C. Enz: 
”Circuit techniques for reducing the effects of opamp 
imperfections: Autozeroing, Correlated Double Sampling, and 
Chopper Stabilization”, Proceedings of the IEEE, Nov. 1996.

SC amplifier (left) and SC integrator with 
CDS (right)

(Fig. 10.34 and fig. 10.35) 

• For the amplifier: During 2 the error is sampled and stored across C1

vin

2 1

1 2 

2 1 

1

1

C2

vout

C 2

C1

• For the amplifier: During 2 the error is sampled and stored across C1 
and C2

• The stored error is then subtracted during 1
• For the integrator: During 1 the error is sampled and stored across C’2
• The stored error is then subtracted during 2
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SC-integrator with CDS (”J & M” page 434)
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• During Phi2 the error is sampled and stored 
accross C2

• The stored error is then subtracted during phi2.

”Johns & Martin” page 434
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Data Converter Fundamentals (chapter 11)



2/25/2010

17

Main data converter types:

• Nyquist rate converters:• Nyquist-rate converters:
• Each value has a one-to-one correspondencewith a single 

input
• The sample-rate must be at least equal to twice the signal 

frequency (Typically somewhat higher)

• Oversampled converters:
• The sample-rate is much higher than the signal frequency, 

typically 20 512 timestypically 20 – 512 times.
• The extra samples are used to increase the SNR
• Often combined with noise shaping

Flash ADC from 1926 (Analog Digital 
Conversion handbook, Analog Devices)
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11.1 Ideal D/A converter
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Example 11.1 : 8-bit D/A converter
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11.2 Ideal A/D converter ( Fig. 11.3 )

A/DVin
Bout
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11
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---------------- 1/4 1 LSB= =Bout

Ideal transfer curve for a 2-bit A/D converter ( Fig. 11.4 )
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•A range of input values produce the same output value (QA range of input 
values produce the same output value (Quantization error)

•Different from the D/A case
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11.3 Quantization noise 

A/D D/A
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Q ti ti
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Quantization noise model

Vin V1
V1

Vin
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Quantizer Model

V1 Vin VQ+=

•The model is exact as long as VQ is properly defined

•VQ is most often assumed to be white and uniformely distributed between +/- Vlsb/2
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Quantization noise

VQ rms 

VLSB-------------=

•The rms-value of the quantization noise can be shown to be:

Q rms  12

Vref 2

Vin rms  
  Vref 2 2 

 
 

•Total noise power is independent of sampling frequency

•In the case of a sinusoidal input signal with p-p amplitude of           

SNR 20 in rms 
VQ rms 
-------------------
 
 
 

log 20 ref  

VLSB 12 
--------------------------------
 
 
 

log= =

SNR 6,02N 1,76 dB+=

Quantization noise (SNR as a function of Vin)
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•Signal-to Noise ratio is highest for maximum input signal amplitude
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11.4 Signed codes • Unipolar / bipolar
• Common signed digital repr.: 

sign magnitude, 1’s 
complement, 2’s compl.

• Sign M : 5:0101 5:1101• Sign. M.: 5:0101, -5:1101, 
two repr. Of 0, 2N-1 numb.

• 1’s compl.: Neg. Numbers are 
complement of all bits for 
equiv. Pos. Number: 5:0101, -
5:1010

• Offset bin: 0000 to the most• Offset bin: 0000 to the most 
neg., and then counting up..  

+: closely related to unipolar 
through simple offset

2’s complement
• 510 : 0101 = 22 + 20

• - 510 : (0101)’ +1 = 1010 + 1 =
10111011

• Addition of positive and negative numbers is straightforward, p g g ,
using addition, and requires little hardware

• 2’s complement is most popular representation for signed 
numbers when arithmetic operations have to be performed
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710-610 via addition using two’s complement of -6

• 0000 0000 0000 0000 0000 0000 0000 001112 = 710

• 0000 0000 0000 0000 0000 0000 0000 001102 = 610

• Subtraction uses addition: The appropriate operand is negated
before being added

• Negating a two’s complement number: Simply invert every 0 and 1• Negating a two s complement number: Simply invert every 0 and 1 
and add one to the result. Example: 

• 0000 0000 0000 0000 0000 0000 0000 01102 becomes
• 1111  1111  1111 1111 1111  1111  1111 10012

+                                                                     12

----------------------------------------------------------------------------------------------------------------

= 1111 1111 1111 1111 1111 1111 1111 1111 10102 1111 1111 1111 1111 1111 1111 1111 1111 10102

0000 0000 0000 0000 0000 0000 0000 0000 01112 =   710

+  1111  1111  1111  1111  1111  1111 1111  1111 10102  = -610

=  0000 0000 0000 0000 0000 0000 0000 0000 00012  =   110

11.5 performance limitations
• Resolution
• Offset and gain error
• Accuracy
• Integral nonlinearity (INL) error
• Differential nonlinearity (DNL) error
• Monotonicity
• Missing codes
• A/D conversion time and sampling rate
• D/A settling time and sampling rate
• Sampling time uncertainty
• Dynamic range
• NB!! Different meanings and definitions of performance parameters 

sometimes exist.  Be sure what’s meant in a particular specification or 
scientific paper.. There are also more than those mentioned here.
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Resolution
• Resolution usually refers to the number of bits in 

the input (D/A) or output (ADC) word, and is 
often different from the accuracy.

• Analog-Digital Conversion Handbook, Analog Devices, 3rd 
Edition, 1986: An n-bit binary converter should be able to 
provide 2n distinct and different analog output values 
corresponding to the set of n binary words. A converter that 
satisfies this criterion is said to have a resolution of n bits.

Next Tuesday (2/3-10):
• Chapter 12 Nyquist DACs
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