

Last time - and today, Tuesday 23rd of February:
9.2 Laplace Transform of Discrete Time Signals 9.3 z-transform
9.4 downsampling and Upsampling
9.5 Discrete Time Filters
9.6 Sample-and-Hold Response
10.1 Switched Capacitor Circuits
10.2 Basic Operation and Analysis Today:
10.3 First-order filters
10.4 Biquad filters (high-Q)
10.5 Charge injection
10.7 Correlated double sampling techn
11.1 Ideal D/A converter
11.2 Ideal A/D converter
11.3 quantization noise
11.4 signed codes
iff
UNIVERSITETET
I OSLO UNIVER
I OSLO

Signal-flow-graph analysis (p. 407)

ef

Of UNIVERSITETET
I OSLO I osto

Getting the transfer function..

Signal Flow Graph (Fig. 10.13 in "J \& M")
SIGNAL FLOW GRAPH IN FIG 10.13
(10.30)

$$
\begin{aligned}
& V_{\text {out }}(z)=-\frac{c_{1}}{c_{A}} \cdot v_{1}(z)+\frac{c_{2}}{c_{A}} \frac{z^{-1}}{1-z^{-1}} v_{2}(z)-\frac{c_{3}}{c_{A}} \frac{1}{1-z^{-1}} V_{3}(z) \\
&=-\frac{c_{1}}{C_{A}} \frac{\left(1-z^{-1}\right)}{\left(1-z^{-1}\right)} \cdot v_{1}(z)+\frac{c_{2}}{c_{A}} \frac{z^{-1}}{1-z^{-1}} v_{2}(z)-\frac{c_{3}}{c_{A}} \frac{1}{1-z^{-1}} V_{3}(z) \\
& \text { Sec that } \frac{1}{C_{A}\left(1-z^{-1}\right)} \text { is a common factor }
\end{aligned}
$$

First-Order Filters

- Select a known Active-RC circuit
- Replace resistors by SC-equivalents
- Analyze using discrete-time methods

Fully Differential Filters (p. 414 (1/3))

- The signal is represented by the difference of two voltages
- Most SC-designs are fully differential, typically operating around a dc common-mode voltage halfway between the supply voltages
- Reduced common-mode noise
- Cancellation of even-order harmonic distortion, if the nonlinearity is memoryless
(1)
universitetet rosto

Differential implementation (fig. 10.18 p. 415)

Example: Fully differential SC-sigma-delta ADC published May 2007

A MICRO POWER SIGMA-DELTA A/D CONVERTER IN $0.35-\mu \mathrm{M}$ CMOS FOR LOW FREQUENCY APPLICATIONS

- Downloaded from IEEEXplore (http://ieeexplore.ieee.org/Xplore/dynhome.jsp)

Properties of Fully Differential Filters, compared to single-ended solutions

- Requires two copies of a single-ended filter except from the Opamp which is shared
- Common-mode feedback circuitry is required
- The input- and output signal amplitude are doubled. The same dynamic range can be achieved with half-sized capacitors:
- Area reduction and less power consumption
- Reduced size of switches (less charge)
- More wires are required
- Improved performance with respect to noise and distortion

High-Q Biquad active RC-filter

- Another circuit is required for high Q-values and small capacitor spread
- Q-damping is obtained by adding a capacitor around both integrators instead of a resistive feedback around the last integrator

High-Q Switched-capacitor biquad filter (Fig. 10.25, p. 421) by changing the resistors with SC-equivalents

eff

High-Q Biquad Filter

- General transfer function:

$$
\mathrm{H}(\mathrm{z}) \equiv \frac{\mathrm{V}_{\mathrm{o}}(\mathrm{z})}{\mathrm{V}_{\mathrm{i}}(\mathrm{z})}=-\frac{\mathrm{K}_{3} \mathrm{z}^{2}+\left(\mathrm{K}_{1} \mathrm{~K}_{5}+\mathrm{K}_{2} \mathrm{~K}_{5}-2 \mathrm{~K}_{3}\right) \mathrm{z}+\left(\mathrm{K}_{3}-\mathrm{K}_{2} \mathrm{~K}_{5}\right)}{\mathrm{z}^{2}+\left(\mathrm{K}_{4} \mathrm{~K}_{5}+\mathrm{K}_{5} \mathrm{~K}_{6}-2\right) \mathrm{z}+\left(1-\mathrm{K}_{5} \mathrm{~K}_{6}\right)}
$$

- The function can be rewritten as:
- The coefficients are then:

$$
\mathrm{H}(\mathrm{z})=-\frac{\mathrm{a}_{2} \mathrm{z}^{2}+\mathrm{a}_{1} \mathrm{z}+\mathrm{a}_{0}}{\mathrm{z}^{2}+\mathrm{b}_{1} \mathrm{z}+\mathrm{b}_{0}}
$$

$$
\begin{aligned}
\mathrm{K}_{1} \mathrm{~K}_{5} & =\mathrm{a}_{0}+\mathrm{a}_{1}+\mathrm{a}_{2} \\
\mathrm{~K}_{2} \mathrm{~K}_{5} & =\mathrm{a}_{2}-\mathrm{a}_{0} \\
\mathrm{~K}_{3} & =\mathrm{a}_{2} \\
\mathrm{~K}_{4} \mathrm{~K}_{5} & =1+\mathrm{b}_{0}+\mathrm{b}_{1} \\
\mathrm{~K}_{5} \mathrm{~K}_{6} & =1-\mathrm{b}_{0}
\end{aligned}
$$

- A signal-flow-graph approach is used to find the transfer function. There is some freedom in chossing the coefficients as there is one less equation than the number of coefficients. K4 = K5 = SQR ($1+\mathrm{b0} 0+\mathrm{b} 1$) defines the other ratios.

- To reduce th̉e effects of charge injection in SC circuits, realize all switches connected to ground or virtual ground as nchannel switches only, and turn off the switches connected to ground or virtual ground first. Such an approach will minimize distortion and gain error as well as keeping DC offset low.
- In this case $\theta_{1 \mathrm{a}}$ and $\theta_{2 \mathrm{a}}$ are turned off first to prevent other switches affecting the output voltage of the circuit.

Ex. 10.6
(2/2)

Correlated Double Sampling ("CDS")

- Used to realize highly accurate gain amplifiers, sample-andhold circuits and integrators to reduce errors due to offset voltages, $1 / f$ noise and finite opamp gain.
- Method: During a calibration phase the input voltage of an opamp is sampled and stored (accross a C) and later subtracted from the signal in the operational phase (when the output is being sampled), by appropriate switching of the capacitors.
- A detailed description is beyond the scope of the text in "J \& M". The interested reader may check: C. G. Themes, C. Enz: "Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, Correlated Double Sampling, and Chopper Stabilization", Proceedings of the IEEE, Nov. 1996.

eff

SC amplifier (left) and SC integrator with CDS (right)

- For the amplifier: During $\theta 2$ the error is sampled and stored across C1 and C2
- The stored error is then subtracted during $\theta 1$
- For the integrator: During $\theta 1$ the error is sampled and stored across C'2
- The stored error is then subtracted during $\theta 2$

- During Phi2 the error is sampled and stored accross C2
ifj
(1) Mosiversitetet

Main data converter types:

- Nyquist-rate converters:
- Each value has a one-to-one correspondencewith a single input
- The sample-rate must be at least equal to twice the signal frequency (Typically somewhat higher)
- Oversampled converters:
- The sample-rate is much higher than the signal frequency, typically $20-512$ times.
- The extra samples are used to increase the SNR
- Often combined with noise shaping

Flash ADC from 1926 (Analog Digital Conversion handbook, Analog Devices)

The first documented flash converter was part of Paul M. Raineys electro-mechanical PCM facsimile system described in a relatively ignored patent filed in 1921 (Reference to the intensity of light drives a galvanometer which in turn moves another beam of light which activates one of 32 individual photocells, depending upon the amount of
galvanometer deflection (see Figure 3.49). Each individual photocell output activates par of a relay network which generates the 5 -bit binary code.

Figure 3.49: A 5-Bit Flash ADC Proposed by Paul Rainey
Adapted from Paul M. Rainey, "Facsimile Telegraph System," U.S. Patent
1,608,527, Filed July 20, 1921, Issued November 30, 1926

11.1 Ideal D/A converter

$$
\begin{gathered}
B_{\text {in }}=b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots+b_{N} 2^{-N} \\
V_{\text {out }}=V_{\text {ref }}\left(b_{1} 2^{-1}+b_{2} 2^{-2}+\ldots+b_{N} 2^{-N}\right)
\end{gathered}
$$

Example 11.1 : 8-bit D/A converter

An ideal D/A converter has

$$
\mathrm{V}_{\mathrm{ref}}=5 \mathrm{~V}
$$

Find Vout when

$$
\mathrm{B}_{\text {in }}=10110100
$$

$$
\mathrm{B}_{\text {in }}=2^{-1}+2^{-3}+2^{-4}+2^{-6}=0,703125
$$

$$
\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {re }} \mathrm{B}_{\text {in }}=3,516 \mathrm{~V}
$$

Find

$$
\mathrm{V}_{\mathrm{LSB}}
$$

$$
\mathrm{V}_{\mathrm{LSB}}=5 / 256=19,5 \mathrm{mV}
$$

11.2 Ideal A/D converter (Fig. 11.3)

$$
\mathrm{V}_{\mathrm{ref}}\left(\mathrm{~b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{-2}+\ldots+\mathrm{b}_{\mathrm{N}} 2^{-\mathrm{N}}\right)=\mathrm{V}_{\mathrm{in}} \pm \mathrm{V}_{\mathrm{x}}
$$

where

$$
-\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}} \leq \mathrm{V}_{\mathrm{x}}<\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}}
$$

(2v) UNIVERSITETET

Ideal transfer curve for a 2-bit A/D converter (Fig. 11.4)

-A range of input values produce the same output value (QA range of input values produce the same output value (Quantization error)
-Different from the D/A case

6iv UNIVERSITETET I OSLO

11.3 Quantization noise

$$
\mathrm{V}_{\mathrm{Q}}=\mathrm{V}_{1}-\mathrm{V}_{\mathrm{in}}
$$

Quantization noise

-The rms-value of the quantization noise can be shown to be:

$$
\mathrm{V}_{\mathrm{Q}_{(\mathrm{rms})}}=\frac{\mathrm{V}_{\mathrm{LSB}}}{\sqrt{12}}
$$

-Total noise power is independent of sampling frequency
-In the case of a sinusoidal input signal with p-p amplitude of $\quad V_{\text {ref }} / 2$

$$
\begin{aligned}
& \mathrm{SNR}=20 \log \left(\frac{\mathrm{~V}_{\mathrm{in}(\mathrm{rms})}}{\mathrm{V}_{\mathrm{Q}(\mathrm{~ms})}}\right)=20 \log \left(\frac{\mathrm{~V}_{\mathrm{ref}} /(2 \sqrt{2})}{\mathrm{V}_{\mathrm{LSB}} /(\sqrt{12})}\right) \\
& \mathrm{SNR}=6,02 \mathrm{~N}+1,76 \mathrm{~dB}
\end{aligned}
$$

(8) universitetet

Quantization noise (SNR as a function of Vin)

-Signal-to Noise ratio is highest for maximum input signal amplitude

2's complement

ALaratoo		${ }^{2}$ compl	
0111		$\stackrel{+}{4}$	- $5_{10}: 0101=2^{2}+2^{0}$
001	+5	+5	
${ }^{0} 0000$	$\stackrel{+4}{+3}$	$\stackrel{+4}{+3}$	$510:(0101)^{\prime}+1=1010+1=$
$\frac{0011}{0010}$	${ }_{+}^{+3}$		1) 1 - $1010+1$

```
\(7_{10}-6_{10}\) via addition using two's complement of - 6
- \(000000000000000000000000000000111_{2}=7_{10}\)
- \(000000000000000000000000000000110_{2}=6_{10}\)
- Subtraction uses addition: The appropriate operand is negated
    before being added
```

- Negating a two's complement number: Simply invert every 0 and 1
and add one to the result. Example:
- $00000000000000000000000000000110_{2}$ becomes
- $11111111111111111111111111111001_{2}$
$+$
1_{2}
= $111111111111111111111111111111111010_{2}$
$00000000000000000000000000000000{0111_{2}=}=7_{10}$
$+111111111111111111111111111111111010_{2}=-6_{10}$
$=000000000000000000000000000000000001_{2}=1_{10}$

11.5 performance limitations

- Resolution
- Offset and gain error
- Accuracy
- Integral nonlinearity (INL) error
- Differential nonlinearity (DNL) error
- Monotonicity
- Missing codes
- A/D conversion time and sampling rate
- D/A settling time and sampling rate
- Sampling time uncertainty
- Dynamic range
- NB!! Different meanings and definitions of performance parameters sometimes exist. \rightarrow Be sure what's meant in a particular specification or scientific paper.. There are also more than those mentioned here.

Universitetet I OSLO

Resolution

- Resolution usually refers to the number of bits in the input (D/A) or output (ADC) word, and is often different from the accuracy.
- Analog-Digital Conversion Handbook, Analog Devices, 3rd Edition, 1986: An n-bit binary converter should be able to provide $2 n$ distinct and different analog output values corresponding to the set of n binary words. A converter that satisfies this criterion is said to have a resolution of n bits.

Next Tuesday (2/3-10):

- Chapter 12 Nyquist DACs

Additional litterature

- Adnan Gundel, William N. Carr: A micropower sigma-delta A/D converter in 0.35 um CMOS for low-frequency applications, Proceedings of IEEE Long Island Systems, Applications and Technology Conference, IEEE 2007
- [GrTe86]: Roubik Gregorian, Gabor C. Temes: Analog MOS Integrated Circuits for signal processing, Wiley, 1986.
- [Haah94]: Nils Haaheim: Analog CMOS, Universitetet i Trondheim, Norges Tekniske Høgskole, 1994.
- Adel S. Sedra, Kenneth C. Smith: Microelectronic Circuits, Saunders College Publ., 1989.
- Kenneth R. Laker, Willy M. C. Sansen: Design of analog integrated circuits and systems, McGraw-Hill, 1994.

eff

