

Last time - and today, Tuesday 9th of March:

Last time:
12.1 Decoder-Based Converters
12.2 Binary-Scaled Converters
12.3 Thermometer-Code Converters
12.4 Hybrid Converters

Today - from the following chapters:
13.1 Integrating Converters
13.2 Successive-Approx. Converters
13.3 Algorithmic (or cyclic) A/D Converters
13.4 Flash (or parallel) converters
13.5 Two-Step A/D converters
13.6 Interpolating A/D Converters (16/3-10)
13.7 Folding A/D Converters (16/3-10)
13.8 Pipelined A/D Converters
13.9 Time-Interleaved A/D Converters

UNIVERSITETET

Different A/D Converter Architectures

Low-to-Medium Speed High Accuracy	Medium Speed Medium Accuracy	High Speed Low-to-Medium Accuracy
Integrating	Successive approximation	Flash
Oversampling	Algorithmic	Two-Step
		Interpolating
		Folding
		Pipelined

UNIVERSITETET

Different ADCs depending on needs

Figure 1. ADC architectures, applications, resolution, and sampling rates.

Fig. 2. ADC sample rate vs. ENOB from 1987 to 2005.

Which ADC Architecture Is Right for Your Application?

By Walt Kester [walt.kester@analog.com]

IEEE 2005 CUSTOM INTEGRATED CIRCUITS CONFERENCE
Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS
Y. Chiu ${ }^{1}$, B. Nikolici ${ }^{2}$, and P. R. Gray ${ }^{2}$

Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
Electrical Engineering and Computer Sciences, University of California at Berkeley

A/D-conversion - Basic Principle

$$
\begin{gathered}
\mathrm{V}_{\mathrm{ref}}\left(\mathrm{~b}_{1} 2^{-1}+\mathrm{b}_{2} 2^{-2}+\ldots+\mathrm{b}_{\mathrm{N}} 2^{-\mathrm{N}}\right)=\mathrm{V}_{\mathrm{in}} \pm \mathrm{x} \\
\text { where }\left(-\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}}<\mathrm{x}<\frac{1}{2} \mathrm{~V}_{\mathrm{LSB}}\right)
\end{gathered}
$$

- The analog input value is mapped to discrete digital output value
- Quantization error is introduced

Integrating Converters (13.1)

- $\mathrm{V}_{\mathrm{x}}(\mathrm{t})=\mathrm{V}_{\text {in }} \mathrm{t} / \mathrm{RC}\left(\mathrm{V}_{\mathrm{x}}\right.$ ramp derivative depending on $\left.\mathrm{V}_{\text {in }}\right)$
- High linearity and low offset/gain error
- Small amount of circuitry
- Low conversion speed
- $2^{\mathrm{N}+1}$ * $1 / \mathrm{T}_{\mathrm{clk}}$ (Worst case)

UNIVERSITETET

Integrating Converters

- The digital output is given by the count at the end of T_{2}
- The digital output value is independent of the time-constant RC

UNIVERSITETET

Dual slope ADC
POSITIVE INTEGRATOR USED
IN DUAL-SLUPE ADC

$$
\begin{aligned}
v_{\text {out }} & =\frac{1}{R C} \int_{0}^{t} v_{\text {inn }} d t \\
& =\frac{v_{\text {in }}}{R C} t
\end{aligned}
$$

Example: 16-bit two-slome ADC

$$
\frac{v_{i n n}}{R}=C \frac{d v_{i n t}}{d t}
$$

$$
\begin{aligned}
& \text { with } V_{\text {in }}=3 \mathrm{~V}, V_{x \text { max }}=4 \mathrm{~V} \text { and } \\
& T_{1}=20 \mathrm{~ms} \quad R C-\text { constant? Clock fr? } \\
& f_{\text {cIv }}=\frac{1}{T_{\text {clvi. }}}=\frac{2^{16}}{20 \mathrm{~ms}} \approx \frac{3.28 \mathrm{MHz}}{} \\
& \text { equation }(13.15): \\
& V_{x}=\frac{V_{\text {in }} T_{1}}{R C} \Leftrightarrow 4 \mathrm{~V}=\frac{3 \mathrm{~V} 20 \mathrm{~ms}}{R C}
\end{aligned}
$$

$$
i_{1}=i_{2}
$$

$$
\frac{d v_{0 . t}}{d t}=\frac{v_{\text {inn }}}{R C}
$$

介

$$
R C=15 \mathrm{~ms}
$$

Integrating Converters - careful choice of T1 can attenuate frequency components superimposed on the input signal

- In the above case, 60 Hz and harmonics are attenuated when T1 is an integer multiple of $1 / 60 \mathrm{~Hz}$.
- Sinc-response with rejection of frequencies multiples of $1 / T_{1}$

UNIVERSITETET

Successive approx ADC algorithm

 (13.2)

```
IS \(X \geq(32+16) ?\)
```IS \(X \geq(32+8) ?\)
YES \(\rightarrow\) RETAIN \(8 \rightarrow \mathbf{1}\)IS \(X \geq(32+8+4) ?\)
IS \(X \geq(32+8+4+2) ?\)
YES \(\rightarrow\) RETAIN \(4 \rightarrow 1\)
\(\mathrm{NO} \rightarrow\) REJECT \(2 \rightarrow \mathbf{0}\)
YES \(\rightarrow\) RETAIN \(1 \rightarrow 1\)
\[
\text { TOTALS: } X=32+8+4+1=45^{10}=101101^{2}
\]

Figure 4. Successive-approximation ADC algorithm using balance scale and binary weights.

Which ADC Architecture Is Right for Your Application?

By Walt Kester [walt.kester@analog.com]
UNIVERSITETET I OSLO

\section*{Successive-Approximation Converters}

- Uses binary-search algorithm
- Accuracy of \(2^{\mathrm{N}}\) requires N steps
- The digital signal accuracy is within +/- 0.5 \(\mathrm{V}_{\text {ref }}\)
- Medium speed
- Medium resolution
- Relatively moderate complexity

\section*{DAC-Based Successive Approximation}

- \(\mathrm{V}_{\mathrm{D} / \mathrm{A}}\) is adjusted until the value is within \(1 L S B\) of \(\mathrm{V}_{\text {in }}\)
- Starts with MSB and continues until LSB is found
- Requires DAC, S/H, Comparator and digital logic
- The DAC is typically limiting the resolution

UNIVERSITETET

\section*{Succ. Approx ADC, example 13.2}

\[
\begin{aligned}
& V_{\text {ret }}=8 \mathrm{~V} \\
& V_{\text {in }}=2.831 \mathrm{~V} \\
& \text { 3-bit conversion } \\
& \text { cycle 1: } B_{\text {out }}=100 \text {, so that } V_{D / A}=4.0 \mathrm{~V} \text {. Since } V_{\text {in }}<V_{D / A}, b_{1} \rightarrow 0 \\
& \text { cycle 2: } B_{\text {out }}=010 \text {, so that } V_{D / A}=2.0 \mathrm{~V} \text {. Since } V_{\text {in }}>V_{D / A}, b_{2} \rightarrow 1 \\
& \text { cycle 3: } B_{\text {out }}=011,-11=3.0 \mathrm{~V} \text {. Since } V_{\text {in }}<V_{D / A}, b_{3} \rightarrow 0
\end{aligned}
\]

UNIVERSITETET

Ex. 13.2

START
MODIFIED
FLOW GRAPH

\[
v_{\text {ret }}=8 \mathrm{~V}, v_{\text {in }}=2.831 \mathrm{~V}
\]
\[
V_{D / A}=\frac{V_{r e t}}{2^{i+1}}=\frac{8 v}{2^{1}}=4 v
\]
\[
V_{\text {in }}>V_{b / k} \Leftrightarrow 2.831 \mathrm{~V}>4 \mathrm{~V}^{2} \rightarrow \mathrm{NO} \mathrm{~V}_{0}
\]
\[
b_{i+1}=b_{0+1}=b_{1}=0
\]
\[
i \rightarrow i+1=0+1=1
\]
\[
V_{D / A} \rightarrow 4 v-\frac{8}{2^{2}} v=4 v-2 v=2 v
\]
\[
i=1 \geqslant 3 ? \rightarrow N O
\]
\[
\begin{aligned}
& V_{\text {in }}>V_{D / A} \Leftrightarrow 2.831 V>2 V ? \rightarrow Y E S V \\
& b_{i+1}=b_{1+1}=1 ; b_{2}=1 \\
& i \rightarrow i+1=1+1=2 \\
& V_{D / A} \rightarrow V_{D / A}+\frac{V_{\text {ret }}}{2^{i+1}}=2 V+\frac{8}{2^{2+1}}=2 V+1 V \\
& i=2,2 \geqslant 3 ? N O 0 \\
& V_{\text {in }}>V_{D / A} \Leftrightarrow 2.831 V>3 V ?-N O \\
& b_{3}=0
\end{aligned}
\]
\(V_{D / A}\) update, \(3 \geqslant 3 \Rightarrow\) STOP

\section*{Charge-Redistribution A/D-Converter (unipolar)}
- Instead of using a separate DAC and setting it equal to the input voltage (within 1 LSB) as for the DAC based converter from figure 13.5, one can use the error signal equaling the difference between the input signal, \(\mathrm{V}_{\mathrm{in}}\), and the DAC output, \(\mathrm{V}_{\mathrm{D} / \mathrm{A}}\)

Fig. 13.6 Flow graph for a modified successive approximation (divided remainder).

Numbers from 13.2 setting an error signal \(\vee\) equal to \(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{D} / \mathrm{A}}\) - modified succ. approx as in fig. 13.6

\section*{Unipolar Charge-Redistribution A/D-Converter}

UNIVERSITETET
I OSLO

\section*{Charge-Redistribution A/D-Converter \\ - Sample mode:}
- All capacitors charged to Vin while the comparator is reset to its threshold voltage through \(\mathrm{S}_{2}\). The capacitor array is performing \(\mathrm{S} / \mathrm{H}\) operation.
- Hold mode:
- The comparator is taken out of reset by opening \(S_{2}\), then all capacitors are switched to ground. \(\mathrm{V}_{\mathrm{x}}\) is now equal to \(-V_{\text {in }}\). Finally \(S_{1}\) is switched so that \(V_{\text {ref }}\) can be applied to the capacitors during bit-cycling.
- Bit-cycling:
- The largest capacitor is switched to \(V_{\text {ref }} V_{x}\) goes to \(-V_{\text {in }}+V_{\text {ree }} / 2\). If \(V_{x}\) is negative, then \(\mathrm{V}_{\text {in }}\) is greater than \(\mathrm{V}_{\text {ref }} / 2\) and the MSB capacitor is left connected to \(\mathrm{V}_{\text {ref }}\) Otherwise the MSB capacitor is disconnected and the same procedure is repeated N times

Fig. 13.7 A 5-bit unipolar charge-redistribution A/D converter. of
\&x. 13.3 pw. 497
Find intermediate node voltages at \(V_{x}\) during the operation of the 5 -bit charge-redistribution converted shown in fig. 13.7. Assume 8 C as a SAMPLE MODE: parasitic cap. at \(U_{x}\)
 Top-plates
 to \(V_{-}\), to minimize parasític capacitance at nock \(V_{x}\).

HOLD MODE:
\[
\begin{aligned}
& \frac{V_{x}=\frac{32}{32+8} \cdot\left(-v_{\text {in }}\right)}{\frac{1}{T_{16 c}} \frac{1}{T_{4 c}} \frac{1}{T_{2 c}} \frac{1}{T_{c}} \frac{1}{T} \cdot \frac{18 c}{c}+\frac{1}{=}} \\
& \frac{c_{p 1}}{\frac{1}{\frac{1}{2}}} \\
& V_{x}=\frac{32}{40} \cdot(-1.23 \mathrm{v})=-0.984 \mathrm{~V}
\end{aligned}
\]
pp. 396 :

\(C_{x}\) and \(C_{y}\) functions of digital word/switching
1) Sample mode
2) Hold mode
3) Bit - cycling

- b, is switched, controlling the le capacitor:
\[
\begin{aligned}
V_{x} & =-0.982 v+\frac{16}{(32+8)} \cdot 5 v \\
& =-0.984 v+2 v=1.016 v \\
v_{x} & >0 \Rightarrow b_{1}=0
\end{aligned}
\]

- \(V_{x}=-0.984 v+\frac{8}{(32+8)} \cdot 5 v\)
\(V_{x}=-0.984 v+1 v=0.016 \mathrm{~V}\) When \(b_{2}\) is switched \(v_{x}>0\), So \(b_{2}=0\) and \(V_{x}\) is set back to - 0.984 V by
switching by back to gad.
- \(b_{3}\) is switched:
\(v_{x}=-0.984 \mathrm{~V}+\frac{4.5}{40} \mathrm{~V}=-0.484 \mathrm{~V}\)
\(V_{x}\) is now \(<0 \Rightarrow b_{3}=1\) and
\(b_{3}\) left connected to \(V_{\text {ref. }}\).

UNIVERSITETET
I OSLO

- \(b_{4}\) is switched:
\[
\begin{aligned}
V_{x}= & -0.984 v+\frac{6}{40} \cdot 5 v= \\
& -0.984 v+0.75 v=-0.234 v \\
v_{x_{4}} & <0 \Rightarrow b_{4}=1
\end{aligned}
\]

- bs is switched:
\[
\begin{aligned}
& V_{x_{5}}=-0.234 v+\frac{1}{40} \cdot 5 v=-0.109 v \\
& v_{x_{5}}<0 \Rightarrow b_{5}=1
\end{aligned}
\]

May also be expressed from the drawing and the orig.
sampled volt.:
\[
\text { DAG: } V_{\text {out }}=V_{\text {ref }}\left(b_{1} 2^{-1}+b_{2} 2^{-2}+b_{3} \cdot 2^{-3}+b_{4} \cdot 2^{-4}+b_{5} \cdot 2^{-5}\right)
\]
\[
=5(0.125 v+0.0625 v+0.03125 v)=5 v(0.21875)=1.09375 v
\]
\[
\begin{aligned}
\frac{32}{32+8}\left(-v_{i n}\right)+\frac{7}{32+8} \cdot s v & = \\
-0.984 \mathrm{~V}+0.875 \mathrm{~V} & =-0.109 \mathrm{~V} \\
V_{G} & =1.09375 \mathrm{~V} \div \\
(0.21875)=1.09375 \mathrm{~V} \quad & =-0.13625
\end{aligned}
\]

\section*{Succ. Approx. Approach flow graph}

\section*{Signed Charge redistribution A/D}

(Fig. 13.8)
- Resembling the unipolar version (Fig. 13.7)
- Assming \(\mathrm{V}_{\text {in }}\) is between \(+/-\mathrm{V}_{\text {ref }} / 2\)
- Disadvantage: \(\mathrm{V}_{\text {in }}\) attenuated by a factor 2, making noise more of a problem for high resolution ADCs
- Any error in the MSB capacitor causes both offset and a signdependent gain error, leading to INL errors

\section*{Resistor-Capacitor Hybrid (figure 13.9 in "J \& M")}
- First all capacitors are charged to \(\mathrm{V}_{\text {in }}\) before the comparator is being reset.
- Next a succ. approx. conversion is
 performed to find the two adjacent resistor nodes having voltages larger and smaller than \(\mathrm{V}_{\text {in }}\)

One bus will be connected to one node while the other is connected to the other node. All of the capacitors are connected to the bus having the lower voltage.
- Then a successive approximation using the capacitor-array network is done, starting with the largest capacitor...

\section*{Speed estimate for charge-redistribution converters}

Fig. 13.12 Simplified model of a capacitor array during the sam-
pling time.
- RC time constants often limit speed
- Individual time constant due to the 2C cap.: \(\left(R_{s 1}+R+R_{s 2}\right) 2 C\)
- (R ; bit line)
- \(\operatorname{Tau}_{e q}=\left(R_{s 1}+R+R_{s 2}\right) 2^{N} C\), for the circuit in fig. 13.12
- For better tha 0.5 LSB accuracy: \(\mathrm{e}^{-}\) T/Taueq < 1/(\(\left.2^{\mathrm{N}}+1\right), \mathrm{T}=\) charging time
- \(\mathrm{T}>\mathrm{Tau}_{\text {eq }}(\mathrm{N}+1) \mathrm{In} 2\)
\(=0.69(N+1)\) Tau \(_{\text {eq }}\)
- 30 \% higher than from Spice simulations ("J \& M")

UNIVERSITETET

\section*{Algorithmic (or Cyclic) A/D Converter}
- Similar to the Successive
 approximation converter
- Constant \(\mathrm{V}_{\text {ref }}\)
- Doubles the error each cycle, instead of halving the reference voltage in each cycle, like succ. approx. conv.
- Requires an accurate multiply-by-2 amplifier
- Accuracy can be improved by operating in four cycles (instead of two)
- compact

\section*{Ratio-Independent Algorithmic Converter}

- Simple circuitry
- Due to the cyclic operation the circuitry are reused in time
- Fully differential circuits normally used

\section*{Ratio-Independent Algorithmic Converter}

- The basic idea is to sample the input signal twice using the same capacitor. During the \(2^{\text {nd }}\) sampling the charge from the \(1^{\text {st }}\) capacitor is stored on a \(2^{\text {nd }}\) capacitor whose size is unimportant. After the \(2^{\text {nd }}\) sampling both charges are recombined into the \(1^{\text {st }}\) capacitor which is then connected between the opamp input and output.
- Does not rely on capacitor matching, is insensitive to amplifier offset.

\section*{Flash (Parallel) Converters (13.4)}
- High speed - among the fastest

- \(2^{\mathrm{N}}\) comparators in parallel, each connected to different nodes area consuming
- High power consumption
- Thermometer-code output fed into decoder
- Nands used for simpler decoding and error detection (bubble error)
- Differential comparator required to ensure sufficient PSSR
- Top and bottom resistors chosen to create the 0.5 LSB offset in an A/D converter

\section*{Flash converter}

\section*{Clocked CMOS comparator}

Fig. 13.17 A clocked CMOS comparator
- When the clock ("phi") is high, the inverter is set to its bistable point, Vin = Vout (= Vdd/2). The other (left) side of \(C\) is charged to \(V_{\text {ri }}\).
- When the clock ("phi") goes low, the inverter switches, depending on the voltage difference between \(\mathrm{V}_{\mathrm{ri}}\) and \(\mathrm{V}_{\mathrm{in}}\). \(\left(\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{in}} ; 1\right.\) output, \(\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\mathrm{in}}\); output from inv.)
- Differential inverters helps poor PSRR with this simple comparator solution.

\section*{Issues in Designing Flash A/D Converters}
- Input Capacitive Loading: The large number of comparators connected to Vin results in a large capacitive load on at the input node which increases power and reduces speed
- Comparator Latch-to-Track Delay: The internal delay in the comparator when going from latch to track mode
- Signal and/or Clock Delay: Differences in signal/clock delay between the comparators may cause errors. Example: A250-MHz, 1-V peak inputsinusoid converted with 8 -bit resolution requires a precision of 5 ps. Can be reduced by matching the delays and capacitive loads on the signal/clock.
- Substrate and Power-Supply Noise: For a 8-bit converter with Vref=2V only 7.8 mV of noise injection is required to introduce an error of 1LSB. The problem can be reduced by proper layout (Shielding, Differential clocks, Separate power supplies, and symmetrical layout)
- Bubble Error Removal: Comparator metastability may introduce wrong thermometer code (a single 1 or 0 in between opposite values)
- Flashback: Caused by latched comparators. When the comparator is switched from track to latch mode a charge glitch is introduced at the input. The problem is reduced by using a preamplifier and input impedance matching

\section*{Two-Step (Subranging) A/D Converters (13.5)}

- Popular choice for high-speed medium accuracy converters (8-10 b)
- Less area and power consumption than a Flash ADC
- The MSB's are converted during the first step. In the next step the remaining error is converted into the LSB's
- Speed is limited by the Gain Amplifier
- Requires N-bit accuracy for all components (May be relaxed by using Digital Error Correction)

UNIVERSITETET

\section*{Digital Error Correction for two-step A/D}

- The accuracy requirements on the input ADC is relaxed due to the error corr.. 4-bit for MSb converter

UNIVERSITETET

\section*{Pipelined ADCs (13.5) Once the first stage has completed it's work it immediately starts working on the next sample}

\section*{- Small area}

The pipelined ADC has its origins in the subranging architecture, first used in the 1950 s . A block diagram of a simple 6-bit, two-stage subranging ADC is shown in Figure 11.

DATA OUTPUT, N -BITS \(=\mathrm{N} 1+\mathrm{N} 2=3+3=6\)
Figure 11. 6 -bit, two-stage subranging ADC.
The output of the SHA is digitized by the first-stage 3-bit sub-ADC (SADC) - usually a flash converter. The coarse 3-bit MSB conversion is converted back to an analog signal using a 3-bit sub-DAC (SDAC). Then the SDAC output is subtracted from the SHA output, the difference is amplified, and this "residue signal" is digitized by a second-stage 3-bit SADC to generate the three LSBs of the total 6-bit output word.

\section*{Pipelined ADC -example}

\section*{A Cost-Efficient High-Speed 12-bit Pipeline ADC}
\[
\text { in } 0.18-\mu \mathrm{m} \text { Digital CMOS }
\]

Terje Nortvedt Andersen, Bjørnar Hernes, Member, IEEE, Atle Briskemyr, Frode Telstø,
Johnny Bjørnsen, Member, IEEE, Thomas E. Bonnerud, and Øystein Moldsvor

Fig. 9. SFDR, SNR, and SNDR versus input frequency. The nd signal swing are \(110 \mathrm{MS} /\) sand \(2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\), respectively.

Fig. 7. Power dissipation versus conversion rate. The input frequency and
\begin{tabular}{c|c}
\hline \hline Nominal sampling rate & \(110 \mathrm{MS} / \mathrm{s}\) \\
\hline Technology & \(0.18 \mu \mathrm{~m}\) digital CMOS \\
\hline Nominal supply voltage & 1.8 V \\
\hline Resolution & 12 bit \\
\hline Full scale analog input & \(2 \mathrm{~V}_{\text {P-p }}\) \\
\hline Area & \(0.86 \mathrm{~mm}^{2}\) \\
\hline Power consumption & 97 mW \\
\hline DNL & \(\pm 1.2 \mathrm{LSB}\) \\
\hline INL & \(-1.5 /+1 \mathrm{LSB}\) \\
\hline SNR \(\left(f_{i n}=10 \mathrm{MHz}\right)\) & 67.1 dB \\
\hline SNDR \(\left(f_{i n}=10 \mathrm{MHz}\right)\) & 64.2 dB \\
\hline SFDR \(\left(f_{i n}=10 \mathrm{MHz}\right)\) & 69.4 dB \\
\hline ENOB \(\left(f_{i n}=10 \mathrm{MHz}\right)\) & 10.4 bit \\
\hline
\end{tabular}

\section*{Time-Interleaved A/D-converter (13.9)}

Figure 10.7-2 A time-interweaved A/D converter array.
- Very high speed (figure to the right from "Allen \& Holberg")
- \(f_{0}\) is four timer higher than \(f_{1}-f_{4}\), which in addition is slightly delayed
- Only the S/H and the MUX must run on the highest frequency
- Tones are introduced at multiples of \(\mathrm{f}_{0} / \mathrm{N}\)

\section*{Time-Interleaved - best compromise between complexity and sampling rate - may be used for different architectures [Elbjornsson '05]}

Figure 7 Comparison between ADC architectures. The time interleaved successive
approximation ADC gives the best compromise between complexity and sampling rate.

\section*{Dynamic range}
- Dynamic range is defined as the power of the maximum input signal range divided by the total power of the quantization noise and distortion
- Often referred to as Signal-to-Noise-andDistortion range
- \(\mathrm{S} /(\mathrm{N}+\mathrm{D})\)
- SINAD

\section*{Analog and digital supply voltages are reduced as technology scales}

\section*{Some ADC trends:}

Fig. 1. Scaling of supply and threshold voltages.
- Limited dynamic range at low supply voltages remains the utmost challenge for highresolution Nyquist converters.
- Oversampling converters will dominate this arena in the future
- Linearity correction with digital correction is becoming prevalent

\section*{Nyquist ADCs at ISSCC; FOM, Effective Number of Bits}
\[
\text { FOM }=\frac{P}{2^{2 E^{2 N O B}} f_{s}} .
\]

Fig. 22. FOM as a function of effective number of bits and technology.

\section*{Analog Circuit Design in Nanoscale CMOS Technologies}

Classic analog designs are being replaced by digital methods, using nanoscale digital devices, for calibrating circuits, overcoming device mismatches, and reducing bias and temperature dependence.
10. mars 2010

By Lanny L. Lewyn, Life Senior Member Ieee, Trond Ytterdal, Senior Member Ieee, Carsten Wulff, Member IEEE, and Kenneth Martin, Fellow IEee
- FOM: Figure of Merit
- High-resolution conv.: FOM minimum at about \(10^{-17} \mathrm{~J} /\) step
- 6-bit ADCs : FOM about 4 orders of magnitude worse than 14 bit converters, suggesting that there is much to be gained by designing more effecient 6-bit ADCs
- Better ENOB reported for 350 nm than 250 nm, 180 nm and 130 nm
- Data from ISSCC up to 2005.

\section*{Nyquist ADCs at ISSCC; FOM, Sampling rate}
\[
\mathrm{FOM}=\frac{P}{2^{2 \mathrm{ENOB}} f_{s}}
\]

Fig. 23. FOM cliff for Nyquist ADCs in ISSCC 2000-2007.
Vol. 97, No. 10, October 2009 | Proceedings of the IEEE
- Maximum Sampling frequency (Usually faster is better) and FOM.
- ISSCC 2000-2007 (90 nm, 130 nm, 180 nm technologies)
- Small improvement in sampling frequency in going to finer technologies, mainly due to reduced capacitance.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Publication year & SFDR @Nyquist [dB] & ENOB @ Nyquist & Nyquist upaate [Ms/s & Power
consumpt. [mW] & \[
\begin{array}{|c}
\text { Area } \\
{\left[\mathrm{mm}^{2}\right]}
\end{array}
\] & Supply [V] & Technology [nm] & other & Reference \\
\hline 2006 & 55 & 8.5 & 1000 & 250 & 3.5 & 1.2 & 130 & Time interleaved & \begin{tabular}{l}
Gupta et al \\
IEEE JSSC ’06
\end{tabular} \\
\hline 2007 & & 4 & 2500 & 24 & 0.057 & 1.2 & 130 & "Pipelined flash" & Wang et al IEEE Trans
Instr. Meas \\
\hline 2007 & & 5 & 500 & 6 & 0.9 & 1.2 & 65 & Time interleaved succ. approx & Ginsburg et a IEEE JSSC '07 \\
\hline 2007 & & 8 & 100 & 30 & 2.04 & 1.0 & 180 & Switched opamp pipeline & \\
\hline 2008 & & 10 & 30 & 22 & 0.7 & 1.8 & 180 & pipelined & \\
\hline 2009 & 81 & 13 & & 0.073 & & 0.7 & 180 & Detasasigm & Chae, JSSCC Feb. 09 \\
\hline 2009 & 27.5 & 4.3 & 1750 & 2.2 & 0.02 & 1.0 & 90 & "Folding flash" & \begin{tabular}{l}
Verbruggen, \\
JSSCC, Mar. '09
\end{tabular} \\
\hline 2009 & 10 & & 1.2 & 12.2 & 0.354 & 3.3 & 350 & \[
\begin{aligned}
& \text { Continous time } \\
& \text { sigma delta }
\end{aligned}
\] & \[
\begin{aligned}
& \text { TCAS-II, Jan. } \\
& \text { '09 }
\end{aligned}
\] \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

UNIVERSITETET I OSLO

\section*{Sampling-time uncertainty}
-Variation in output voltage caused by variations in the time of sampling
Consider the following input signal: \(\quad V_{\text {in }}=\frac{V_{\text {ref }}}{2} \sin \left(2 \pi f_{\text {in }} t\right)\)

If the variation in sampling time is \(\Delta \mathrm{t}\), following equation must be satisfied to keep \(\Delta \mathrm{V}\) less than 1LSB
\[
\Delta \mathrm{t}<\frac{\mathrm{V}_{\text {LSB }}}{\pi \mathrm{f}_{\text {in }} \mathrm{V}_{\text {ref }}}=\frac{1}{2^{\mathrm{N}} \pi \mathrm{f}_{\text {in }}}
\]

UNIVERSITETET

\section*{Additional litterature}
- Phillip E. Allen, Douglas Holberg: CMOS Analog Circuit Design, Holt Rinehart Winston, 1987.
- Jonas Elbornsson: White paper on parallel successive approximation ADC, Mathcore Engineering AB, 2005.
- R. Gregorian, G. Temes: Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986
- D. M.Gingrich Lecture Notes, University of Alberta, Canada http://www.piclist.com/images/ca/ualberta/phys/www/http/~gingrich/phys395/notes/phys395.html
- Walt Kester: Which ADC is right for your application?
- Y. Chiu, B. Nicolic, P. R. Gray: Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS, Proceedings of Custom Integrated Circuits Conference, 2005.
- Lecture Notes, University of California, Berkeley,

EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/
- Lanny L. Lewyn, Trond Ytterdal, Carsten Wulff, Kenneth Martin: "Analog Circuit Design in Nanoscale CMOS Technologies", Proceedings of the IEEE, October 2009.
- James L. McCreary, Paul R. Gray: "All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques - part 1", IEEE Journal of Solid-State circuits, December 1975.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 7, JLY 2005

\section*{A Cost-Efficient High-Speed 12-bit Pipeline ADC in \(0.18-\mu \mathrm{m}\) Digital CMOS}

UNIVERSITETET I OSLO

\section*{Next Tuesday (10/3-08):}

Rest of chapter 13.
- Chapter 14 Oversampling Converters

Figure 1. ADC architectures, applications, resolution, and sampling rates.

Figure 6. Noise-spectrum effects of the fundamental concepts used in \(\Sigma\) - \(\Delta\) : oversampling, digital filtering, noise shaping, and decimation.

\section*{Analog Layout - mismatch}

- "...The ratio between two similar components on the same integrated circuit can be controlled to better than +/- \(1 \%\), and in many cases, to better than +/- 0.1 \%. Devices specifically constructed to obtain a known, constant ratio are called matched devices."
- "Matching - the Achilles Heel of Analog" (Chris Diorio)

Some companies located in Norway, doing (or that have done) full custom data converter designs:
- Analog Concepts (Trondheim)
- Arctic Silicon Devices (Trondheim)
- Atmel Norway (Trondheim)
- Energy Micro (Oslo)
- GE Vingmed Ultrasound (Horten)
- Nordic Semiconductors (Trondheim, Oslo)
- Novelda (Oslo)

thas Texas Instruments
- Micrel (Oslo)
- Sintef (Trondheim, Oslo)
- Texas Instruments (Oslo)

Metastability in FFS (http://www.asic-world.com/tidbits/metastablity.html) To avoid M. in comparators: Make gain high, increase current levels.

\section*{OWhat is metastability?}

Whenever there are setup and hold time violations in any flip-flop, it enters a state where its output is unpredictable: this state is known as metastable state (quasi stable state); at the end of metastable state, the flip-flop settles down to either ' 1 ' or ' 0 '. This whole process is known as metastability. In the figure below Tsu is the setup time and Th is the hold time. Whenever the input signal \(D\) does not meet the Tsu and Th of the given D flip-flop, metastability occurs.

When a flip-flop is in metastable state, its output oscillate between '0' and ' 1 ' as shown in the figure below (here the flip-flop output settles down to '0'). How long it takes to settle down, depends on the technology of the flip-flop.

The approximate equation which describes the output voltage, \(\mathrm{V}_{\mathrm{o}}(\mathrm{t})\) is given by:
\[
V_{O}(t)=\Delta V_{I N} A e^{t / \tau},
\]
\[
\text { Eq. } 1
\]
where \(\Delta \mathrm{V}_{\mathrm{IN}}=\) the differential input voltage at the time of latching, \(\mathrm{A}=\) the gain of the preamp at the time of latching, \(\tau=\) regeneration time constant of the latch, and \(t=\) the time that has elapsed after the comparator output is latched (see References 2 and 3).

For small differential input voltages, the output takes longer to reach a valid logic level. If the output data is read when it lies between the "valid logic 1 " and the "valid logic 0 " region, the data can be in error. If the differential input voltage is exactly zero, and the comparator is perfectly balanced at the time of latching, the time required to reach a valid logic level can be quite long (theoretically infinite). However, comparator hysteresis and input noise makes this condition highly unlikely. The effects of invalid logic levels out of the comparator are different depending upon how the comparator is used in the actual ADC.

From a design standpoint, comparator metastability can be minimized by making the gain (A) high, minimizing the regeneration time constant (\(\tau\)) by increasing the gain-bandwidth of the latch, and allowing sufficient time (t , for the output of the comparator to settle to a valid logic level. It is not the purpose of this discussion to analyze the complex tradeoffs between speed,```

