

Different A/D Converter Architectures

Low-to-Medium Speed High Accuracy	Medium Speed Medium Accuracy	High Speed Low-to-Medium Accuracy
Integrating	Successive approximation	Flash
Oversampling	Algorithmic	Two-Step
	000	Interpolating
		Folding
	60	Pipelined
	0	Time-interleaved

A/D-conversion – Basic Principle

$$V_{ref}(b_1 2^{-1} + b_2 2^{-2} + ... + b_N 2^{-N}) = V_{in} \pm x$$

where
$$\left(-\frac{1}{2}V_{LSB} < x < \frac{1}{2}V_{LSB}\right)$$

- The analog input value is mapped to discrete digital output value
 - · Quantization error is introduced

Integrating Converters (13.1)

- $V_x(t) = V_{in} t / RC (V_x ramp derivative depending on V_{in})$
- High linearity and low offset/gain error
- Small amount of circuitry
- Low conversion speed
 - 2^{N+1} * 1/T_{clk} (Worst case)

Successive-Approximation Converters

- Uses binary-search algorithm
- Accuracy of 2^N requires N steps
- The digital signal accuracy is within +/- 0.5
 V_{ref}
- Medium speed
- Medium resolution
- Relatively moderate complexity

DAC-Based Successive Approximation

- ullet $V_{D/A}$ is adjusted until the value is within 1LSB of V_{in}
- Starts with MSB and continues until LSB is found
- Requires DAC, S/H, Comparator and digital logic
- The DAC is typically limiting the resolution

Charge-Redistribution A/D-Converter • Sample mode: All capacitors charged to Vin while the comparator is reset to its threshold voltage through S2. The capacitor array is performing S/H operation. · Hold mode: The comparator is taken out of reset by opening S2, then all capacitors are switched to ground. V_x is now equal to $-V_{in}$. Finally S_1 is switched so that V_{ref} can be applied to the capacitors during bit-cycling. • Bit-cycling: The largest capacitor is switched to V_{ref} . V_x goes to $-V_{in} + V_{ref}/2$. If V_x is negative, then V_{in} is greater than $V_{ref}/2$ and the MSB capacitor is left connected to V_{ref} . Otherwise the MSB capacitor is disconnected and the same procedure is repeated N times

Signed Charge redistribution A/D

(Fig. 13.8)

- Resembling the unipolar version (Fig. 13.7)
- Assming V_{in} is between +/- V_{ref}/2
- Disadvantage: V_{in} attenuated by a factor 2, making noise more of a problem for high resolution **ADCs**
- Any error in the MSB capacitor causes both offset and a signdependent gain error, leading to **INL** errors

- Next a succ. approx. conversion is performed to find the two adjacent resistor nodes having voltages larger and smaller than V_{in}
- One bus will be connected to one node while the other is connected to the other node. All of the capacitors are connected to the bus having the lower voltage.
- Then a successive approximation using the capacitor-array network is done, starting with the largest capacitor...

Ratio-Independent Algorithmic Converter

- Simple circuitry
- Due to the cyclic operation the circuitry are reused in time
- Fully differential circuits normally used

Ratio-Independent Algorithmic Converter

- The basic idea is to sample the input signal twice using the same capacitor.
 During the 2nd sampling the charge from the 1st capacitor is stored on a 2nd
 capacitor whose size is unimportant. After the 2nd sampling both charges are
 recombined into the 1st capacitor which is then connected between the
 opamp input and output.
- Does not rely on capacitor matching, is insensitive to amplifier offset.

Clocked CMOS comparator

- When the clock ("phi") is high, the inverter is set to its bistable point, Vin = Vout (= Vdd/2). The other (left) side of C is charged to V_{ri}.
- When the clock ("phi") goes low, the inverter switches, depending on the voltage difference between V_{ri} and V_{in}. (V_{ri} > V_{in}; 1 output, V_{ri} < V_{in}; 0 output from inv.)
- Differential inverters helps poor PSRR with this simple comparator solution.

Issues in Designing Flash A/D Converters

- Input Capacitive Loading: The large number of comparators connected to Vin results in a large capacitive load on at the input node which increases power and reduces speed
- Comparator Latch-to-Track Delay: The internal delay in the comparator when going from latch to track mode
- **Signal and/or Clock Delay:** Differences in signal/clock delay between the comparators may cause errors. Example: A250-MHz, 1-V peak input-sinusoid converted with 8-bit resolution requires a precision of 5ps. Can be reduced by matching the delays and capacitive loads on the signal/clock.
- Substrate and Power-Supply Noise: For a 8-bit converter with Vref=2V only 7.8mV of noise injection is required to introduce an error of 1LSB. The problem can be reduced by proper layout (Shielding, Differential clocks, Separate power supplies, and symmetrical layout)
- Bubble Error Removal: Comparator metastability may introduce wrong thermometer code (a single 1 or 0 in between opposite values)
- Flashback: Caused by latched comparators. When the comparator is switched from track to latch mode a charge glitch is introduced at the input. The problem is reduced by using a preamplifier and input impedance matching

Two-Step (Subranging) A/D Converters (13.5)

- Popular choice for high-speed medium accuracy converters (8-10 b)
- Less area and power consumption than a Flash ADC
- The MSB's are converted during the first step. In the next step the remaining error is converted into the LSB's
- Speed is limited by the Gain Amplifier
- Requires N-bit accuracy for all components (May be relaxed by using Digital Error Correction)

Digital Error Correction for two-step A/D

 The accuracy requirements on the input ADC is relaxed due to the error corr.. 4-bit for MSb converter

Dynamic range

- Dynamic range is defined as the power of the maximum input signal range divided by the total power of the quantization noise and distortion
- Often referred to as Signal-to-Noise-and-Distortion range
- S/(N+D)
- SINAD

Sampling-time uncertainty

•Variation in output voltage caused by variations in the time of sampling

Consider the following input signal: $V_{in} = \frac{V_{ref}}{2} \sin(2\pi f_{in}t)$

If the variation in sampling time is Δt , following equation must be satisfied to keep ΔV less than 1LSB

$$\Delta t < \frac{V_{LSB}}{\pi f_{in} V_{ref}} = \frac{1}{2^N \pi f_{in}}$$

Additional litterature

- Phillip E. Allen, Douglas Holberg: CMOS Analog Circuit Design, Holt Rinehart Winston, 1987.
- Jonas Elbornsson: White paper on parallel successive approximation ADC, Mathcore Engineering AB, 2005.
- · R. Gregorian, G. Temes: Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986
- D. M.Gingrich Lecture Notes, University of Alberta, Canada http://www.piclist.com/images/ca/ualberta/phys/www/http/~gingrich/phys395/notes/phys395.html
- Walt Kester: Which ADC is right for your application?
- Y. Chiu, B. Nicolic, P. R. Gray: Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS, Proceedings of Custom Integrated Circuits Conference, 2005.
- Lecture Notes, University of California, Berkeley,
- EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/
- Lanny L. Lewyn, Trond Ytterdal, Carsten Wulff, Kenneth Martin: "Analog Circuit Design in Nanoscale CMOS Technologies", Proceedings of the IEEE, October 2009.
- James L. McCreary, Paul R. Gray: "All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques – part 1", IEEE Journal of Solid-State circuits, December 1975.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 40, NO. 7, JULY 2005

A Cost-Efficient High-Speed 12-bit Pipeline ADC in 0.18-µm Digital CMOS

Terje Nortvedt Andersen, Bjørnar Hernes, *Member, IEEE*, Atle Briskemyr, Frode Telstø, Johnny Bjørnsen, *Member, IEEE*, Thomas E. Bonnerud, and Øystein Moldsvor

