

Different A/D Converter Architectures

Low-to-Medium Speed High Accuracy	Medium Speed Medium Accuracy	High Speed Low-to-Medium Accuracy
Integrating	Successive approximation	Flash
Oversampling	Algorithmic	Two-Step
		Interpolating
		Folding
		Pipelined
		Time-interleaved

Different ADCs depending on needs

Figure 1. ADC architectures, applications, resolution, and sampling rates.

Fig. 2. ADC sample rate vs. ENOB from 1987 to 2005.

Which ADC Architecture Is Right for Your Application?
By Walt Kester [walt.kester@analog.com]

A/D-conversion - Basic Principle

- The analog input value is mapped to discrete digital output value
- Quantization error is introduced
(20) UNIVERSITETET I oslo

Integrating Converters (13.1)

- $\mathrm{V}_{\mathrm{x}}(\mathrm{t})=\mathrm{V}_{\text {in }} \mathrm{t} / \mathrm{RC}\left(\mathrm{V}_{\mathrm{x}}\right.$ ramp derivative depending on $\left.\mathrm{V}_{\text {in }}\right)$
- High linearity and low offset/gain error
- Small amount of circuitry
- Low conversion speed
- $2^{\mathrm{N}+1}$ * $1 / \mathrm{T}_{\text {clk }}$ (Worst case)

- The digital output is given by the count at the end of T_{2}
- The digital output value is independent of the time-constant RC

Integrating Converters - careful choice of T1 can attenuate frequency components superimposed on the input signal

- In the above case, 60 Hz and harmonics are attenuated when T1 is an integer multiple of $1 / 60 \mathrm{~Hz}$.
- Sinc-response with rejection of frequencies multiples of $1 / T_{1}$

Successive approx ADC algorithm	
(13.2)	
-	- If we have weights of 1 $\mathrm{kg}, 2 \mathrm{~kg}, 4 \mathrm{~kg}, 8 \mathrm{~kg}, 16$
	$\mathrm{kg}, 32 \mathrm{~kg}$ and will find
\square IS $X \geq(32+16)$?	the weight of an
\square is $x \geq(32+8)$?	unknown X assumed to
	- 101101_{2}
\square IS $X \geq(32+8+4+2+1)$? YES \rightarrow RETAIN $1 \rightarrow 1$ TOTALS: $\mathrm{X}=32+8+4+1=45^{10}=101101^{2}$	=1*32+0*16+1*8+1*4+0
	*2+1*1
Which ADC Architecture Is Right	$=45_{10}$
- for Your Application?	
-1, Watrester (Wati.esesereanalog.com]	(19) Moviniosiriter

Successive-Approximation Converters

- Uses binary-search algorithm
- Accuracy of 2^{N} requires N steps
- The digital signal accuracy is within +/- 0.5 $\mathrm{V}_{\text {ref }}$
- Medium speed
- Medium resolution
- Relatively moderate complexity

DAC-Based Successive Approximation

- $V_{D / A}$ is adjusted until the value is within $1 L S B$ of $V_{\text {in }}$
- Starts with MSB and continues until LSB is found
- Requires DAC, S/H, Comparator and digital logic
- The DAC is typically limiting the resolution

Succ. Approx ADC, example 13.2

$V_{\text {ret }}=8 \mathrm{~V}$
$V_{\text {in }}=2.831 \mathrm{~V}$
3-bit conversion
cyele 1: $B_{\text {out }}=100$, so thot $V_{D A A}=4.0 \mathrm{~V}$. Since $V_{\text {in }}<V_{D / A}, b_{1} \rightarrow 0$
cycle $2: B_{\text {out }}=010$, so that $V_{\text {oiA }}=2.0 \mathrm{~V}$. Since $V_{\text {in }}>v_{0 / A}, b_{2} \rightarrow 1$
cycle 3: $B_{\text {out }}=011,-11$ - 3.0 V . Since $v_{i n}<V_{\text {oin }}, b_{3} \rightarrow 0$
010

ef

Charge-Redistribution A/D-Converter (unipolar)

- Instead of using a separate DAC and setting it equal to the input voltage (within 1 LSB) as for the DAC based converter from figure 13.5, one can use the error signal equaling the difference between the input signal, $\mathrm{V}_{\text {in }}$, and the DAC output, $\mathrm{V}_{\mathrm{D} / \mathrm{A}}$

Unipolar Charge-Redistribution A/D-Converter

Charge-Redistribution A/D-Converter

- Sample mode:
- All capacitors charged to Vin while the comparator is reset to its threshold voltage through S_{2}. The capacitor array is performing S / H operation.
- Hold mode:
- The comparator is taken out of reset by opening S_{2}, then all capacitors are switched to ground. V_{x} is now equal to $-\mathrm{V}_{\text {in }}$. Finally S_{1} is switched so that $\mathrm{V}_{\text {ref }}$ can be applied to the capacitors during bit-cycling.
- Bit-cycling:
- The largest capacitor is switched to $V_{\text {ref }} . V_{x}$ goes to $-V_{\text {in }}+V_{\text {ref }} / 2$. If V_{x} is negative, then $\mathrm{V}_{\text {in }}$ is greater than $\mathrm{V}_{\text {ref }} / 2$ and the MSB capacitor is left connected to $\mathrm{V}_{\text {ref }}$. Otherwise the MSB capacitor is disconnected and the same procedure is repeated N times

Signed Charge redistribution A/D

(Fig. 13.8)

- Resembling the unipolar version (Fig. 13.7)
- Assming $\mathrm{V}_{\text {in }}$ is between $+/-\mathrm{V}_{\text {ref }} / 2$
- Disadvantage: $\mathrm{V}_{\text {in }}$ attenuated by a factor 2, making noise more of a problem for high resolution ADCs
- Any error in the MSB capacitor causes both offset and a signdependent gain error, leading to INL errors

ef

Speed estimate for charge-redistribution converters

- RC time constants often limit speed
- Individual time constant due to the 2C cap.: $\left(R_{s 1}+R+R_{s 2}\right) 2 C$
- (R ; bit line)
- $\operatorname{Tau}_{\text {eq }}=\left(R_{s 1}+R+R_{s 2}\right) 2^{\mathrm{N}} \mathrm{C}$, for the circuit in fig. 13.12
- For better tha 0.5 LSB accuracy: e^{-} T/Taueq $<1 /\left(2^{\mathrm{N}}+1\right), \mathrm{T}=$ charging time
- $\mathrm{T}>\operatorname{Tau}_{\text {eq }}(\mathrm{N}+1) \ln 2$
$=0.69(\mathrm{~N}+1) \mathrm{Tau}_{\mathrm{eq}}$
- 30 \% higher than from Spice simulations ("J \& M")

Ratio-Independent Algorithmic Converter

- Simple circuitry

- Due to the cyclic operation the circuitry are reused in time
- Fully differential circuits normally used

$\because C$

UNiversitetet
Ionlo

- The basic idea is to sample the input signal twice using the same capacitor. During the $2^{\text {nd }}$ sampling the charge from the $1^{\text {st }}$ capacitor is stored on a $2^{\text {nd }}$ capacitor whose size is unimportant. After the $2^{\text {nd }}$ sampling both charges are recombined into the $1^{\text {st }}$ capacitor which is then connected between the opamp input and output.
- Does not rely on capacitor matching, is insensitive to amplifier offset.

Clocked CMOS comparator

- When the clock ("phi") is high, the inverter is set to its bistable point, Vin = Vout (= Vdd/2). The other (left) side of C is charged to $V_{\text {ri. }}$.
- When the clock ("phi") goes low, the inverter switches, depending on the voltage difference between V_{ri} and V_{in}. $\left(\mathrm{V}_{\mathrm{i}}>\mathrm{V}_{\mathrm{in}} ; 1\right.$ output, $\mathrm{V}_{\mathrm{i}}<\mathrm{V}_{\mathrm{in}}$; output from inv.)
- Differential inverters helps poor PSRR with this simple comparator solution.

Issues in Designing Flash A/D Converters

- Input Capacitive Loading: The large number of comparators connected to Vin results in a large capacitive load on at the input node which increases power and reduces speed
- Comparator Latch-to-Track Delay: The internal delay in the comparator when going from latch to track mode
- Signal and/or Clock Delay: Differences in signal/clock delay between the comparators may cause errors. Example: A250-MHz, 1-V peak inputsinusoid converted with 8 -bit resolution requires a precision of 5 ps. Can be reduced by matching the delays and capacitive loads on the signal/clock.
- Substrate and Power-Supply Noise: For a 8-bit converter with Vref=2V only 7.8 mV of noise injection is required to introduce an error of 1LSB. The problem can be reduced by proper layout (Shielding, Differential clocks, Separate power supplies, and symmetrical layout)
- Bubble Error Removal: Comparator metastability may introduce wrong thermometer code (a single 1 or 0 in between opposite values)
- Flashback: Caused by latched comparators. When the comparator is switched from track to latch mode a charge glitch is introduced at the input. The problem is reduced by using a preamplifier and input impedance matching

Two-Step (Subranging) A/D Converters (13.5)

- Popular choice for high-speed medium accuracy converters (8-10 b)
- Less area and power consumption than a Flash ADC
- The MSB's are converted during the first step. In the next step the remaining error is converted into the LSB's
- Speed is limited by the Gain Amplifier
- Requires N -bit accuracy for all components (May be relaxed by using Digital Error Correction)

Digital Error Correction for two-step A/D

- The accuracy requirements on the input ADC is relaxed due to the error corr.. 4-bit for MSb converter

Pipelined ADCs (13.5) Once the first stage has completed it's work it immediately starts working on the next sample

- Small area

The pipelined ADC has its origins in the subranging architecture, first used in the 1950s. A block diagram of a simple 6-bit, two-stage subranging ADC is shown in Figure 11.

-

Figure 11.6 -bit, two-stage subranging $A D C$.
The output of the SHA is digitized by the first-stage 3-bit sub-ADC (SADC)-usually a flash converter. The coarse 3-bit MSB conversion is converted back to an analog signal using a 3 -bit sub-DAC (SDAC). Then the SDAC output is subtracted from the SHA output, the difference is amplified, and this "residue signal" is digitized by a second-stage 3-bit SADC to generate the three LSBs of the total 6 -bit output word.

Pipelined ADC -example

A Cost-Efficient High-Speed 12-bit Pipeline ADC in $0.18-\mu \mathrm{m}$ Digital CMOS

- Very high speed (figure to the right from "Allen \& Holberg")
- f_{0} is four timer higher than $f_{1}-f_{4}$, which in addition is slightly delayed
- Only the S/H and the MUX must run on the highest frequency
- Tones are introduced at multiples of $\mathrm{f}_{0} / \mathrm{N}$

- ع

Time-Interleaved - best compromise between complexity and sampling rate - may be used for different architectures [Elbjornsson '05]

Dynamic range

- Dynamic range is defined as the power of the maximum input signal range divided by the total power of the quantization noise and distortion
- Often referred to as Signal-to-Noise-andDistortion range
- $\mathrm{S} /(\mathrm{N}+\mathrm{D})$
- SINAD

Analog and digital supply voltages are reduced as technology scales

Some ADC trends:

Fig. 1. Scaling of supply and threshold voltages.
10. mars 201

IEEE 2005 CUSTOM INTEGRATED CIRCUITS CONFERENCE
Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS
Limited dynamic range at low supply voltages remains the utmost challenge for highresolution Nyquist converters.

- Oversampling converters will dominate this arena in the future
- Linearity correction with digital correction is becoming prevalent

Sampling-time uncertainty

-Variation in output voltage caused by variations in the time of sampling
Consider the following input signal: $\quad V_{\text {in }}=\frac{V_{\text {ref }}}{2} \sin \left(2 \pi f_{i n} t\right)$

If the variation in sampling time is $\Delta \mathrm{t}$, following equation must be satisfied to keep $\Delta \mathrm{V}$ less than 1LSB

$$
\Delta \mathrm{t}<\frac{\mathrm{V}_{\mathrm{LSB}}}{\pi \mathrm{f}_{\text {in }} \mathrm{V}_{\text {ref }}}=\frac{1}{2^{\mathrm{N}} \pi \mathrm{f}_{\text {in }}}
$$

Additional litterature

- Phillip E. Allen, Douglas Holberg: CMOS Analog Circuit Design, Holt Rinehart Winston, 1987.
- Jonas Elbornsson: White paper on parallel successive approximation ADC, Mathcore Engineering AB, 2005.
- R. Gregorian, G. Temes: Analog MOS Integrated Circuits for Signal Processing, Wiley, 1986
- D. M. Gingrich Lecture Notes, University of Alberta, Canada http://www.piclist.com/images/ca/ualberta/phys/www/http/~gingrich/phys395/notes/phys395.html
- Walt Kester: Which ADC is right for your application?
- Y. Chiu, B. Nicolic, P. R. Gray: Scaling of Analog-to-Digital Converters into Ultra-Deep-Submicron CMOS, Proceedings of Custom Integrated Circuits Conference, 2005.
- Lecture Notes, University of California, Berkeley,

EE247 Analog Digital Interface Integrated Circuits, Fall 07;http://inst.eecs.berkeley.edu/~ee247/fa07/

- Lanny L. Lewyn, Trond Ytterdal, Carsten Wulff, Kenneth Martin: "Analog Circuit Design in Nanoscale CMOS Technologies", Proceedings of the IEEE, October 2009.
- James L. McCreary, Paul R. Gray: "All-MOS Charge Redistribution Analog-to-Digital Conversion Techniques - part 1", IEEE Journal of Solid-State circuits, December 1975.

A Cost-Efficient High-Speed 12-bit Pipeline ADC

$$
\text { in } 0.18-\mu \mathrm{m} \text { Digital CMOS }
$$

Terje Nortvedt Andersen, Bjornar Hernes, Member, IEEE, Atte Briskemyr, Frode Telstø,
Johnny Bjornsen, Member, IEEE, Thomas E. Bonnerud, and \varnothing ystein Moldsvor
\%iv UNIVERSITETET I oslo

Next Tuesday (10/3-08):

Rest of chapter 13.

- Chapter 14 Oversampling Converters

Figure 1. ADC architectures, applications, resolution. and sampling rates.

eff

Figure 6. Noise-spectrum effects of the fundamental concepts used in $\Sigma-\Delta$: oversampling, digital filtering, noise shaping, and decimation.

- "... The ratio between two similar components on the same integrated circuit can be controlled to better than +/- 1%, and in many cases, to better than +/- 0.1%. Devices specifically constructed to obtain a known, constant ratio are called matched devices."
- "Matching - the Achilles Heel of Analog" (Chris Diorio)

10. mars 2010

Some companies located in Norway, doing (or that have done) full custom data converter designs:

- Analog Concepts (Trondheim)
- Arctic Silicon Devices (Trondheim)
- Atmel Norway (Trondheim)
- Energy Micro (Oslo)
- GE Vingmed Ultrasound (Horten)
- Nordic Semiconductors (Trondheim, Oslo)
- Novelda (Oslo)
- Micrel (Oslo)
- Sintef (Trondheim, Oslo)
- Texas Instruments (Oslo)

10. mars 2010

