UiO Content of Informatics University of Oslo	
INF44	20
Switched capacitor circuits	
Spring 2012	Jørgen Andreas Michaelsen (jorgenam@ifi.uio.no)

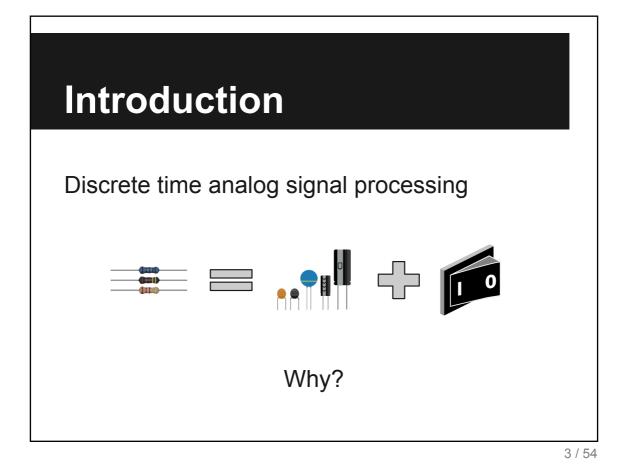
Outline

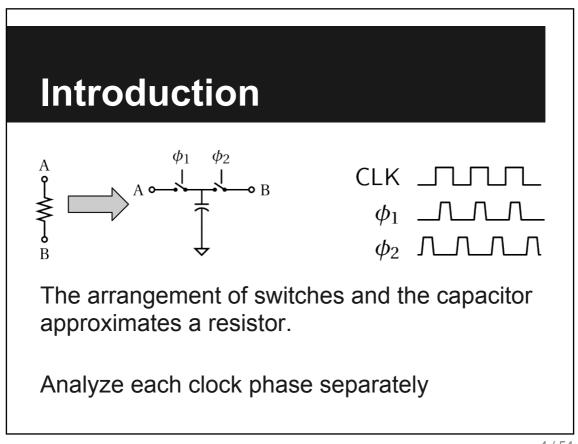
Switched capacitor introduction

MOSFET as an analog switch

z-transform

Switched capacitor integrators





Introduction

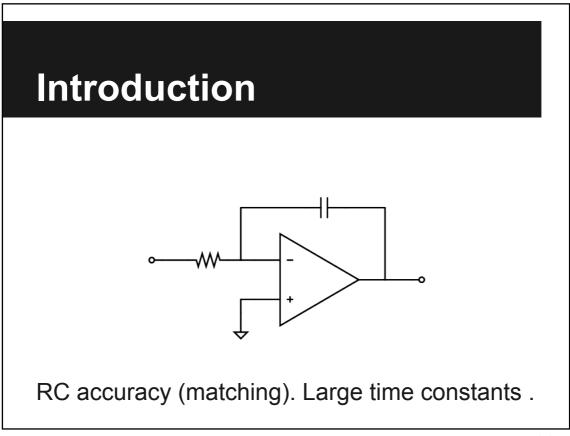
Assuming steady-state, and arbitrarily assume $V_{A} > V_{B}$. *T* is one clock cycle.

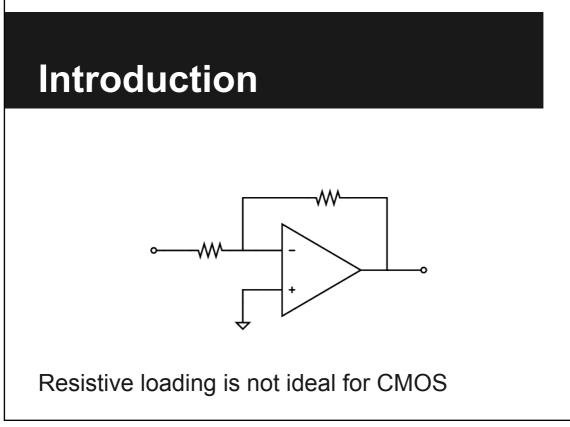
- 1. At the *beginning* of ϕ_1 , node V_c is at V_B Volt
- 2. During ϕ_1 , V_C is charged to V_A . Charge transfer from V_A to C: $\Delta Q = C(V_A V_B)$
- 3. During ϕ_2 : ΔQ transferred from C to V_B

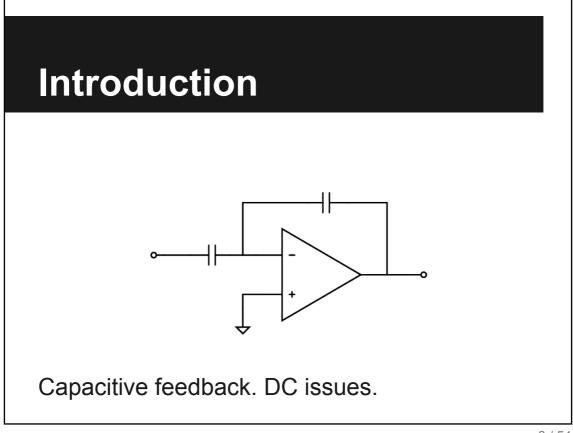
Net charge transfer, ΔQ , from V_A to V_B in T sec.

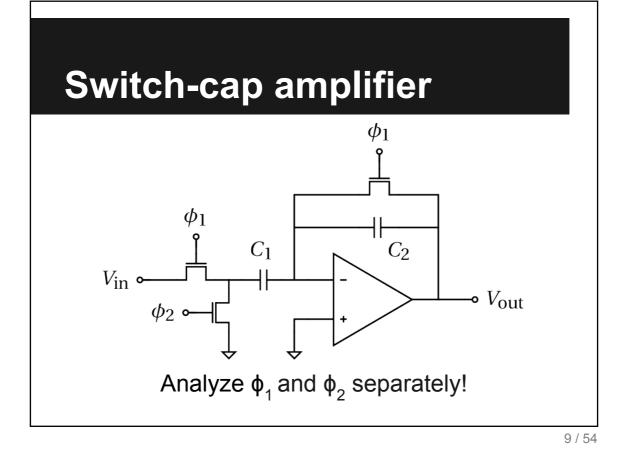
$$I_{AVG} = C(V_A - V_B)/T, R_{AVG} = T/C$$

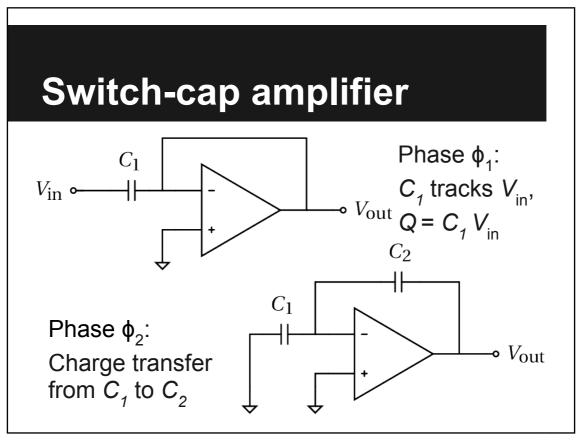
5 / 54

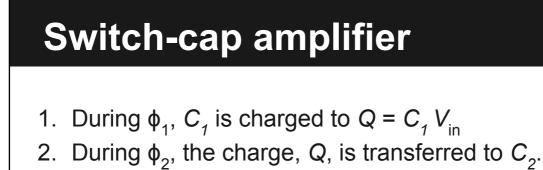








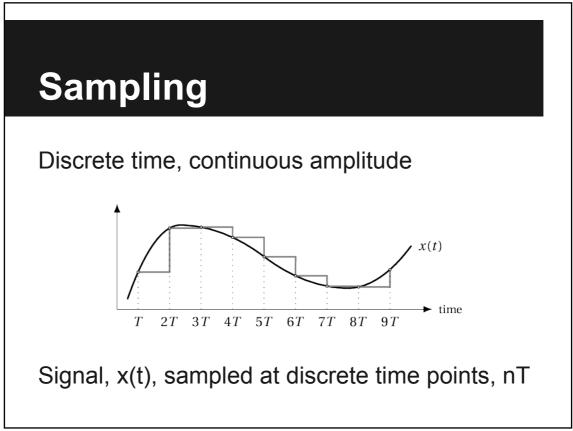




If C_1 and C_2 are of different value, the same charge will give a different voltage drop

$$C_1 V_{\text{in}} = C_2 V_{\text{out}} \Rightarrow V_{\text{out}} = V_{\text{in}} \frac{C_1}{C_2}$$

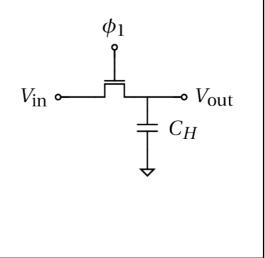
11 / 54



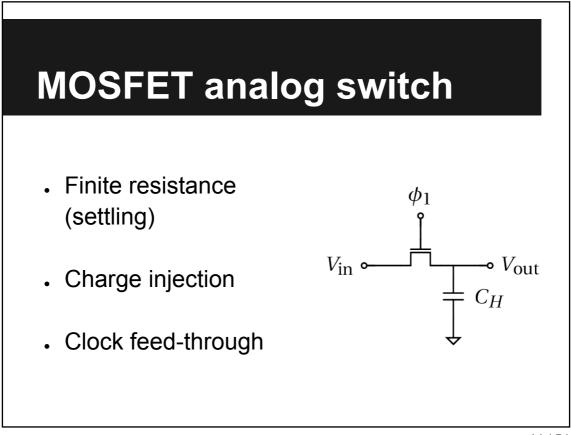
During ϕ_1 , V_{out} tracks V_{in}

After ϕ_1 the switch is closed and V_{in} (from the end of ϕ_1) is held on C_{H} .

However, the MOSFET "switch" is not perfect ...



13 / 54

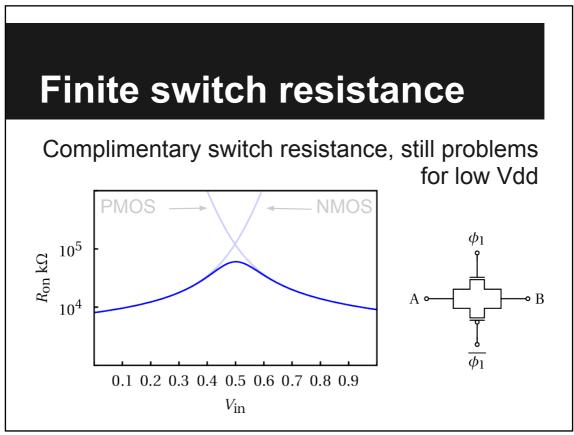


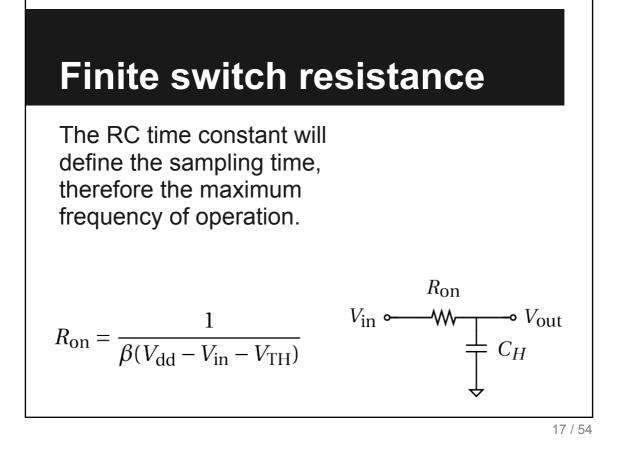
Large signal behaviour

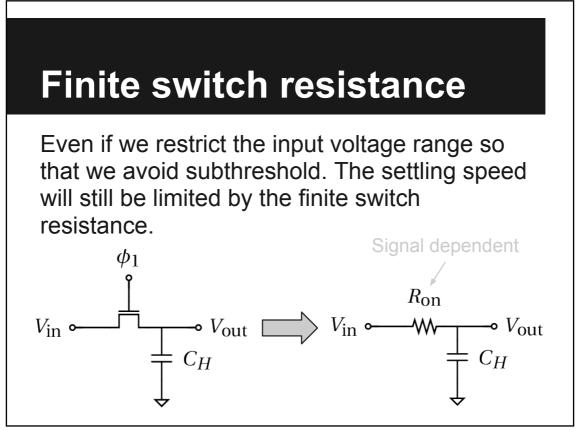
NMOS can discharge effectively from Vdd to 0 (compare to a digital inverter). Saturation, then triode.

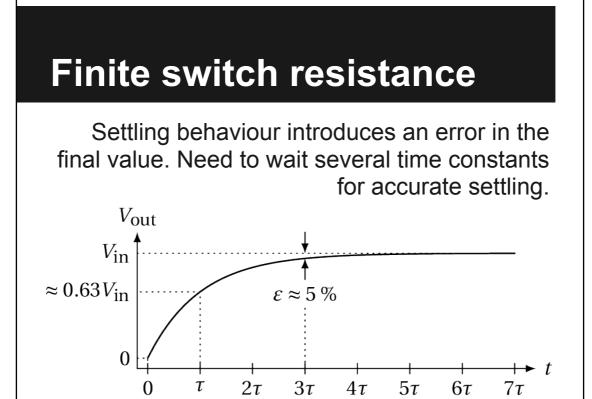
However, the NMOS can not charge from 0 to Vdd. The MOSFET will enter subthreshold and current through the switch will be low. Output will settle to Vdd - Vth. If we wait for a long time, output will slowly approach Vdd.

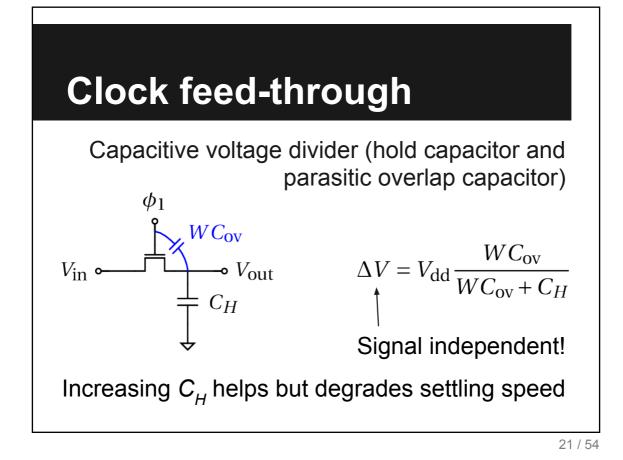
15 / 54

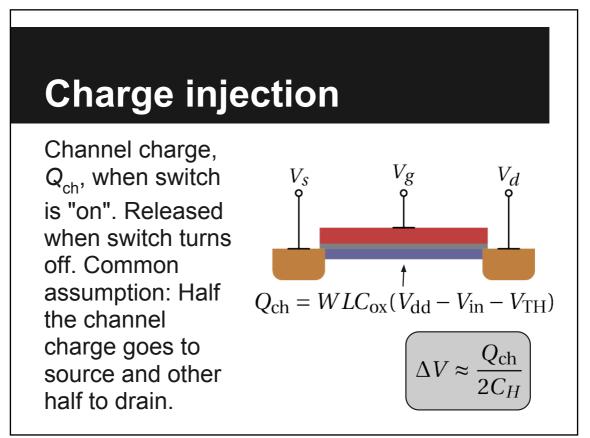


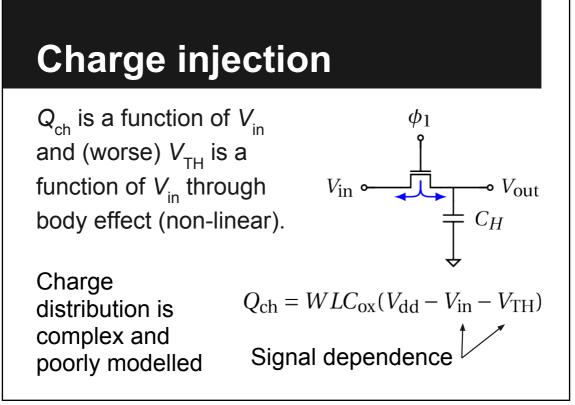












23 / 54

Charge injection

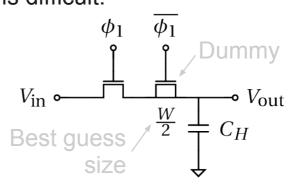
Figure of merit (FoM) to study speed vs. precision trade-off. Larger C_{μ} makes charge injection less prominent but also increases the time constant and therefore ΔV from settling error.

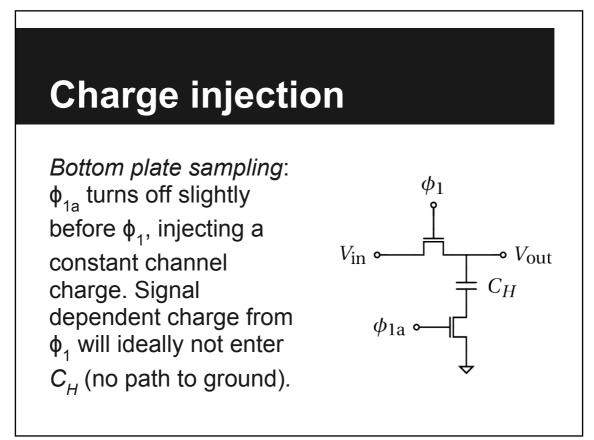
$$FoM = \frac{1}{\tau \cdot \Delta V} = \frac{\mu_n}{L^2}$$

Charge injection

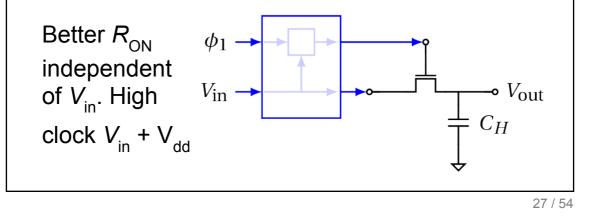
Dummy switch will ideally cancel the injected channel charge. Because the charge distribution is complex, finding the optimal size of the dummy switch is difficult.

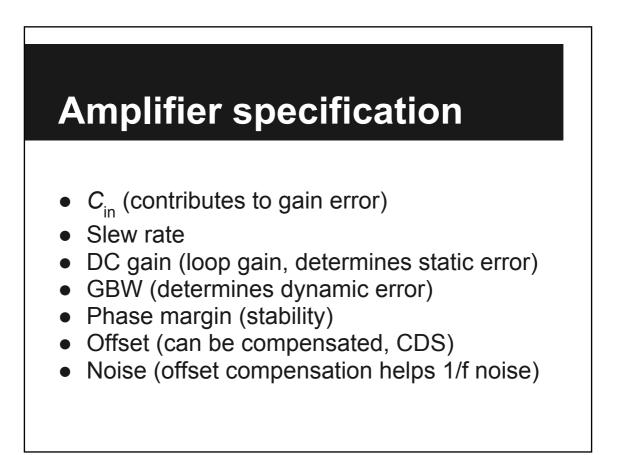
The purpose of the dummy switch is to soak up channel charge from the main switch.





Include extra circuitry to generate a clock voltage that takes V_{in} into account to generate a *constant* V_{GS} . Reliability concerns. Complexity.





For continuous time circuits the Laplace transform is very convenient as it allows us to solve differential equations using algebraic manipulation.

Analyzing SC circuits in terms of charge transfer, and charge conservation, results in difference equations. Need a similar tool for this case.

29 / 54

Sampling and z-transform

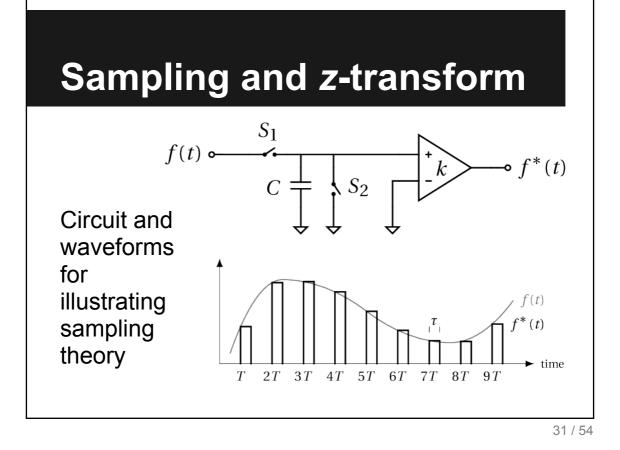
Laplace transform:

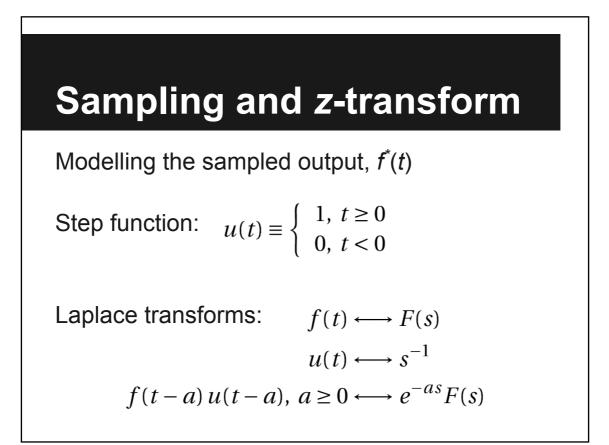
Input signal

$$F(s) = \int_0^\infty f(t) e^{-st} dt$$

Fourier transform:

$$F(j\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$





$$f^{*}(t) = \sum_{n=0}^{\infty} f(nT)[u(t-nT) - u(t-nT-\tau)]$$

assuming $f(t) = 0$ for $t < 0$

$$F^*(s) = k \sum_{n=0}^{\infty} f(nT) \left[\frac{e^{-snT}}{s} - \frac{e^{-s(nT+\tau)}}{s} \right]$$
$$= k \frac{1 - e^{-s\tau}}{s} \sum_{n=0}^{\infty} f(nT) e^{-snT}$$

33 / 54

Sampling and z-transform

Impulse sampling: Choose τ "infinitely narrow" and the gain, $k = 1/\tau$ (area of the pulse equal to the instantaneous value of the input, f(nT)). In this case, we find:

$$F^*(s) \approx \sum_{n=0}^{\infty} f(nT) e^{-snT}$$

A very convenient notation:

$$z \equiv e^{sT}$$

The *z*-transform is very convenient for sampled data systems:

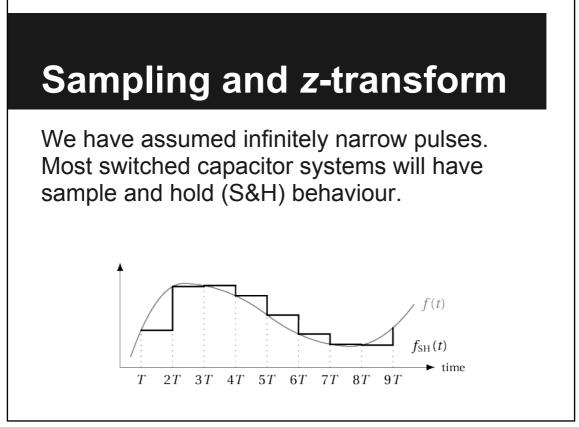
$$F(z) = \sum_{n = -\infty}^{\infty} f(nT) \, z^{-n}$$

Delay by k samples (k periods):

$$z^{-k}F(z)$$

Important!

35 / 54



Use the same equation as before, but instead of letting τ be infinitely narrow, we let $\tau = T$.

 $F^*(s) = \underbrace{k \frac{1 - e^{-s\tau}}{s}}_{s} \sum_{n=0}^{\infty} f(nT) e^{-snT}$

 \approx 1 for impulse sampling

Sample & hold: $F_{\rm SH}(s) = k \frac{1 - e^{-sT}}{s} \sum_{n=0}^{\infty} f(nT) e^{-snT}$

37 / 54

Sampling and z-transform

Comparing $F^*(s)$ and $F_{SH}(s)$, we define the transfer function of the sample and hold as:

$$H_{\rm SH}(s) \equiv \frac{1 - e^{-sT}}{s}$$

Frequency response

Comparing the *z*-transform to the Fourier transform, we can find the frequency response from the *z*-domain expression,

 $s = j\omega$ gives $z = e^{j\omega T}$.

$$F(z) = \sum_{n = -\infty}^{\infty} f(nT) \, z^{-n}$$

$$F\left(e^{j\omega T}\right) = \sum_{n=-\infty}^{\infty} f(nT) e^{-jn\omega T}$$

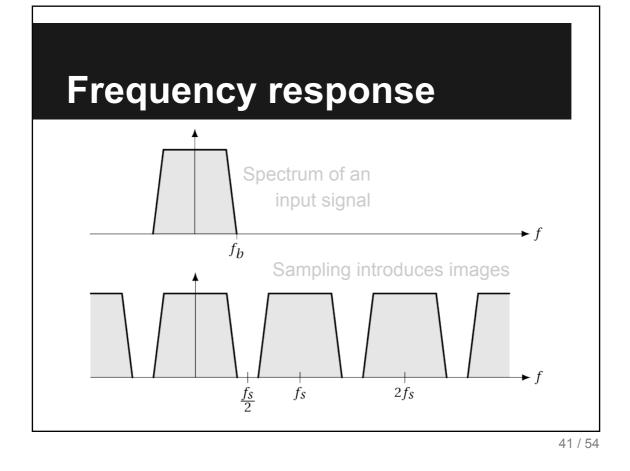
39 / 54

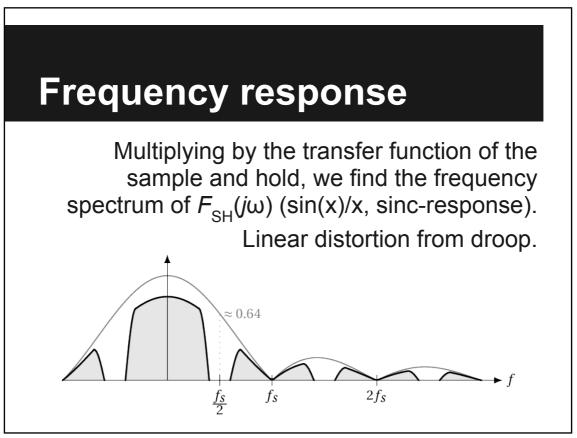
Frequency response

z-transform: $z \rightarrow e^{sT}$. Mapping between *s*-plane and *z*-plane.

Points on the imaginary axis of the *s*-plane map to the *unit circle* in the *z*-plane, periodic with 2π

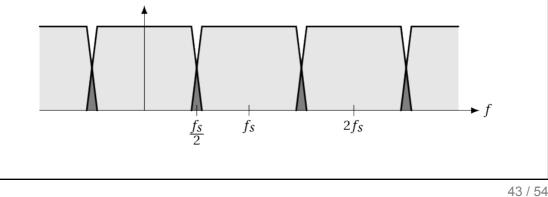
For a sampled data system, frequency response is *z*-domain expression evaluated on the unit circle in the *z*-plane. Poles must be inside unit circle for stability.



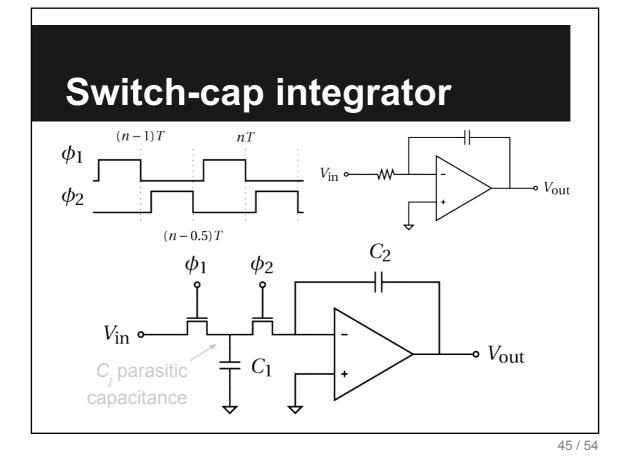


Frequency aliasing

If the signal contains frequencies beyond $f_s/2$ when sampled, aliasing will occur (non-linear distortion). Images of the original signal interfere.

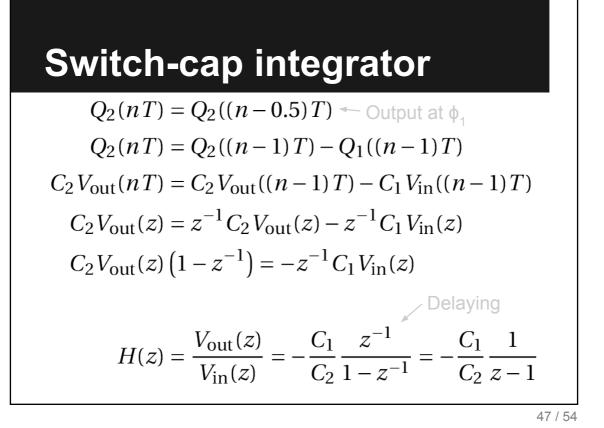


Frequency aliasing A continuous time low-pass filter (anti-aliasing filter) on the input to the sampled data system will ensure that the input signal is band limited to a frequency below the Nyquist frequency. Need to take some margin to account for the transition band of the filter (usually first or second order).

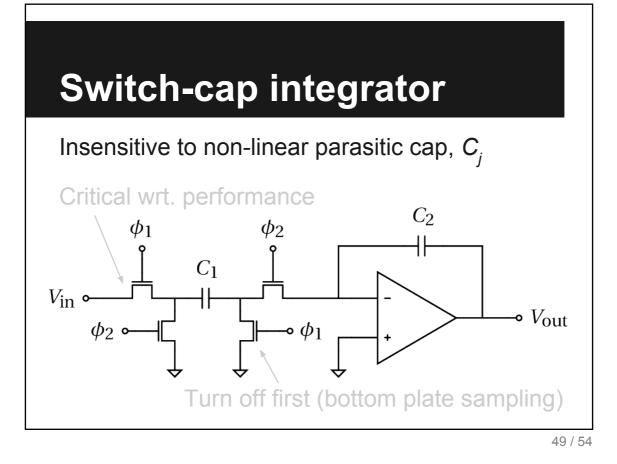


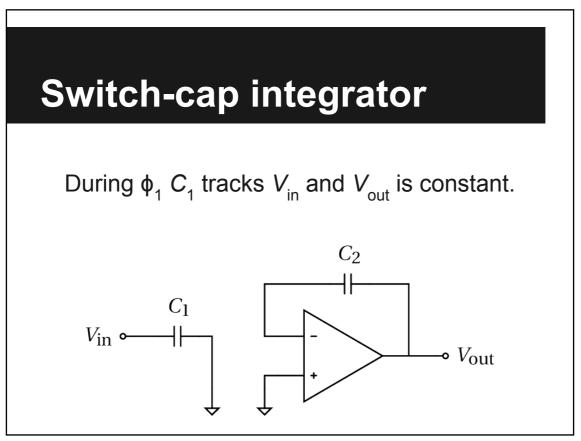
Switch-cap integrator

Charge on C_1 is proportional to V_{in} , $Q_1 = C_1 V_{in}$. Each clock cycle, Q_1 , is transferred from C_1 to C_2 . C_2 is never reset, so charge accumulates on C_2 (indefinitely). We are adding up a quantity proportional to the input signal, V_{in} . This is a discrete time integrator. In the following, we assume the output is read during ϕ_1 .



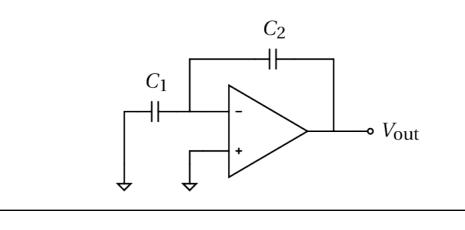
Switch-cap integrator Approx frequency response: $z = e^{j\omega T} \approx 1 + j\omega T$ Valid when ωT is close to zero. I.e. when signal frequency is low compared to sampling freq. $H(z) = -\frac{C_1}{C_2} \frac{1}{z-1}$ Compare to continuous time $H(e^{j\omega T}) \approx -\frac{C_1}{C_2} \frac{1}{j\omega T}, \quad \tau = T\frac{C_2}{C_1}$





Switch-cap integrator

During ϕ_2 charge is transferred from C_1 to C_2 . V_{out} settles to the new value.



51 / 54

Switch-cap integrator

Analysis similar to the parasitic sensitive integrator, however, polarity of the capacitor changes because of the switching. So gain is not inverting.

Looking at the output during ϕ_1 we have a delaying non-inverting integrator.

$$H(z) = \frac{C_1}{C_2} \frac{z^{-1}}{1 - z^{-1}} = \frac{C_1}{C_2} \frac{1}{z - 1}$$

Switch-cap integrator

By changing the switching we get a nondelaying inverting int. $H(z) = -\frac{C_1}{C_2} \frac{1}{1-z^{-1}} = -\frac{C_1}{C_2} \frac{z}{z-1}$

53 / 54

References

Gregorian and Temes, *Analog MOS Integrated Circuits for Signal Processing*, Wiley, 1986

Baker, *Mixed Signal Circuit Design,* IEEE Wiley, 2009

Sansen, *Analog Design Essentials,* Springer, 2006, Ch. 17

Johns and Martin, *Analog Integrated Circuit Design*, Wiley, 1997