
Supporting Adaptive Multimedia Applications through Open Bindings

Tom Fitzpatrick, Gordon S. Blair, Geoff Coulson, Nigel Davies and Philippe Robin

Distributed Multimedia Research Group,
Department of Computing, Lancaster University,

Lancaster LA1 4YR, U.K.

E-mail: [tf, gordon, geoff, nigel, pr]@comp.lancs.ac.uk

Abstract
In order to support multimedia applications in mobile
environments, it will be necessary for applications to be
aware of the underlying network conditions and also to be
able to adapt their behaviour and that of the underlying
platform. This paper focuses on the role of middleware in
supporting such adaptation. In particular, we investigate
the role of open implementation and reflection in the design
of middleware platforms such as CORBA. The paper
initially extends CORBA with the concept of explicit
binding, where path of communication between objects is
represented as first class objects. We then introduce the
concept of open bindings which support inspection and
adaptation of the path of communications. An
implementation of open bindings is described, based on the
Ensemble protocol suite from Cornell University.

1. INTRODUCTION
Future computer systems will consist of end-systems which
will be either disconnected, weakly connected by low speed
wireless networks such as GSM, or fully connected by fixed
networks ranging from Ethernet to ATM. Furthermore, the
level of connectivity will vary over time as a consequence
of the mobility of the modern computer user (see figure 1).
Even when connected to a particular network, fluctuations
in throughput and delay may be experienced due to
congestion, e.g. as witnessed in the Internet.

To cope with such variations, it is important that systems
can adapt to the quality of service (QoS) offered by the
network. Such adaptation can take place at a variety of
levels in the system, e.g. in the communications stack, in
the operating system or in the application. In this paper, we
are concerned with support for adaptation in the middleware
platform, i.e. the layer of software above the operating
system, which offers a platform independent programming
model and hides problems of heterogeneity and distribution.

More specifically we consider the design of middleware
platforms which (i) allow the application to inspect the
current level of QoS at various points of the system, and (ii)
enable applications to dynamically adapt their behaviour or
the behaviour of the underlying platform in response to
changes in QoS. We are particularly interested in adaptation
as required by multimedia applications.

A range of middleware technologies is now available,
including CORBA, DCE, and DCOM. In addition, ISO
have recently completed an international standard defining a
Reference Model for Open Distributed Processing (RM-
ODP); this standard provides a framework for the
development of middleware platforms. In this paper, we
focus on the CORBA platform from OMG, although many
of the arguments could be applied to other platforms.
CORBA provides an environment whereby objects can
interact in a distributed environment. Objects are defined in
a language and platform independent manner through an
Interface Definition Language (IDL). An Object Request
Broker enables clients to issue requests on an object; the
ORB locates the object, transmits the request, prepares the
object implementation for receiving and processing the
request, and conveys results back to the client. (Further
details of CORBA can be found in [2].)

A major problem with CORBA is that the architecture
adopts a traditional black box approach whereby the
implementation of the platform is hidden from the
application. Until recently, this has not been a great
problem. Indeed, it could be argued that this is a highly
desirable property of a middleware platform. With the
advent of mobile (multimedia) computing, however, such
an approach is untenable; in such environments, it is
essential to have (selective) access to the underlying
implementation. To achieve this, we adopt concepts from
open implementation [14] and reflection [16]. In this paper,

we focus on the use of such techniques to enable inspection
and adaptation of the path of communication between
interacting objects. In other research at Lancaster, we also
consider the use of such techniques in other aspects of a
middleware platform (e.g. concurrency control, thread
scheduling and real-time synchronisation).

The paper is structured as follows. Section 2 presents some
background material on open implementation and
reflection. Section 3 then considers our approach to
supporting multimedia in CORBA, focussing on the concept
of explicit bindings. Following this, section 4 presents an
extension to explicit bindings, referred to as open bindings.
The role of open bindings in supporting inspection and
adaptation is then considered in section 5, with section 6
presenting a short example. Section 7 examines the
implementation of the extended middleware platform,
featuring the use of the configurable protocol stack,
Ensemble. Section 8 examines some related work and
section 9 presents some concluding remarks.

2. BACKGROUND ON OPEN IMPLEMENTATION
AND REFLECTION
The concept of open implementations has recently been
investigated by a number of researchers, most notably
Kiczales et al at Xerox PARC [14]. The goal of this work is
to overcome the limitations of the black box approach to
software engineering and to open up key aspects of the
implementation to the application. This must however be
achieved in such a way that there should be a principled
division between the functionality they provide and the
underlying implementation. The former can be thought of as
the base interface of a module and the latter as a meta-
interface [20].

The role of reflection is then to provide a principled means
of achieving open implementation. In a reflective system,
the meta-level interface provides operations to manipulate a
causally connected self-representation of the underlying
implementation. According to Maes [16], a system is said to
be causally connected to its domain if "the internal
structures and the domain they represent are linked in such

a way that if one of them changes, this leads to a
corresponding effect on the other". Such a system has the
benefits that, firstly, the self representation always provides
an accurate representation of the system, and that, secondly,
a reflective system can bring modifications or extensions to
itself by virtue of its own computation. In other words, a
reflective system naturally supports inspection, and
adaptation:

i) Inspection

Reflection enables applications to observe the occurrence
of arbitrary events in the underlying implementation. Such
an approach can be used to implement functions such as
QoS monitors or accounting systems in a portable manner.

ii) Adaptation

Similarly, reflection allows applications to adapt the
internal behaviour of the system either by changing the
behaviour of an existing service (e.g. tuning the
implementation of message passing to operate more
optimally over a wireless link), or dynamically
reconfiguring the system (e.g. inserting a filter object to
reduce the bandwidth requirements of a communications
stream). Such steps are often the result of changes
detected during inspection (see above).

Most of the early research in reflection focussed on the field
of programming language design [14, 24]. More recently,
the work has diversified with applications of reflection in
areas such as windowing systems [20] and operating
systems [25]. There is also growing interest in the use of
reflection in distributed systems. Pioneering work in this
area was carried out by McAffer [18]. More recently,
researchers at APM have developed reflective extensions to
Java with a view to supporting distributed applications.
However, there has been much less activity to date in the
design of reflective middleware. Campbell at Illinois has
carried out initial experiments on reflection in Object
Request Brokers (ORBs) [22]. The level of reflection
however is coarse-grained and restricted to invocation,
marshalling and dispatching. In addition, the work does not
consider key areas such as support continuous media
interaction. Manola has carried out work in the design of a
“RISC” object model for distributed computing [17], i.e. a
minimal object model which can be specialised through
reflection. A PhD student of Cointe is also investigating the
use of reflection in proxy mechanisms for ORBs [15].

3. INTRODUCING EXPLICIT BINDING

3.1. What is Explicit Binding?
In order to address our requirements, it is necessary to
extend the programming model offered by CORBA [2]
(thereby aligning it more with ISO RM-ODP). In particular,

WaveLAN
(wireless 2Mbit/s

Network)

WaveLAN Base Station

Docked Mobile A

Ethernet

Docked Mobile B

WaveLAN equipped
Mobile D

GSM Gateway

WaveLAN & GSM
equipped Mobile C

Figure 1: Mobility Scenario

we introduce the concept of explicit binding. In the current
CORBA programming model, binding is implicit in that,
when objects interact, an appropriate communications path
is created by the underlying ORB. In our approach, we
suggest that bindings should be created explicitly by the
programmer; the result of the binding is then an object
representing the underlying end-to-end communications
path (see figure 2). One consequence of this approach is that
bindings can be created by a third party (in CORBA, the
client always initiates an interaction).

The importance of explicit binding is twofold:

i) the act of creating a binding can subsume static QoS
management functions such as negotiation, admission
control and resource reservation, and

ii) the interface on the binding can be used for dynamic
QoS management functions such as inspection and
adaptation.

In this paper, we are particularly interested in this second
aspect of explicit bindings, i.e. support for inspection and
adaptation.

We introduce two different styles of binding, namely
operational bindings and stream bindings: operational
bindings support the traditional style of interaction in
CORBA, namely operation requests. Stream bindings are
then required to support continuous media interaction. A
given stream consists of one or more flows where each flow
represents the unidirectional transmission of a continuous
media type (e.g. audio or video). As a result of this change,
it is also necessary to distinguish between operational
interfaces and stream interfaces as end-points of operational
bindings and stream bindings respectively.

The architecture is open in that bindings are created by an
extensible set of binding factories. Factories in CORBA are
objects that support the creation of a particular class of
object; binding factories are therefore responsible for
creating a new binding between a target set of objects. One
binding factory could provide the semantics of standard
CORBA requests whereas another could provide real-time
guarantees in terms of end-to-end latency (perhaps
exploiting meta-level functionality to meet the required
guarantees). Similarly, for continuous media interactions,
one factory could provide a best effort service for video
transmission whereas another factory could provide

guarantees through an appropriate resource reservation
strategy. In addition, programmers are free to develop their
own binding classes, perhaps in terms of existing classes.

Explicit bindings provide one step towards a more open
architecture in that communication becomes both visible
and controllable. This is necessary but, in our view, not
sufficient for mobile multimedia applications. We therefore
extend this concept further by introducing open bindings.

4. THE CONCEPT OF OPEN BINDINGS

4.1. General Approach
To support mobile computing, it is necessary for the
application to be able to exert some control over bindings.
One way of achieving this is for binding interface to offer
QoS management operations to monitor the current levels
of QoS and to adapt to perceived changes. The problem
with this approach is that it is very difficult to design a
general means of achieving adaptation. This is especially
problematic when mobility is introduced due to the
proliferation in possible actions. Our approach is for
bindings to offer a meta-interface providing access to a
causally connected self-representation. This self-
representation is provided by an object graph, representing
the underlying end-to-end communications path. This
equates to a procedural as opposed to a declarative approach
to QoS management [3]. We argue that this approach offers
the level of flexibility required by mobile computing.

This procedural approach is influenced by our experiences
with the use of logic or QoS attributes to specify QoS
requirements [6]. We have found that this is a perfectly
valid approach for dealing with static QoS properties but the
approach cannot easily be extended to deal with adaptation.
In Adapt, we still allow the association of some simple QoS
attributes with bindings as a means of checking consistency
between interfaces in the bindings. However, the main
mechanism for dealing with more dynamic aspects of QoS
management is to directly manipulate graphs. Note that this
does not preclude the use of declarative techniques which
can be built on top of the basic procedural facilities
provided by the platform.

4.2. Object Graphs
An object graph consists of processing objects and binding
objects which are connected together by local bindings.
Communication across a local binding is assumed to be
instantaneous and reliable, normally implying that local
bindings are located in a single address space or a single
machine. All other interactions are represented explicitly by
the binding objects in the graph. Processing objects then
either perform computations on the data flowing through
the graph or are responsible for a particular management
function. Examples of processing objects include QoS

Binding Object Control Interface

Local Bindings

Binding Object

Figure 2: Explicit Binding

filters and mixers, QoS monitors, or rate control
components. The concept of an open binding is illustrated
in figure 3 below.

To control visibility of interfaces within a binding, we
introduce the concept of interface mapping. (illustrated as
dotted lines in fig.3) Interface mapping allows an external
interface to map on to the interface of an internal
component. The external interface acts as a proxy for the
internal interface; all interactions occur at the internal
interface via the external interface.

As a further refinement, binding objects can themselves be
open bindings and hence also be composed in terms of
object graphs. The nesting bottoms out by offering a set of
primitive bindings whose implementation is closed. For
example, a particular platform might offer RTP or IP
services as primitive bindings (depending on the level of
openness in the platform). This nested structure provides
access to lower levels of the implementation (if required).
At a finer granularity, each object in the graph can offer an
interface to control its individual behaviour. In addition,
each object is expected to provide an interface for event
notification; to use this, programmers register their interest
in particular events and then receive call-backs when the
events occur (see section 5.2). The concept of nested open
bindings is illustrated in the forthcoming example fig. 4.

5. USING OPEN BINDINGS

5.1. The Component Class
In implementation, open bindings are created as a subclass
of a Component object class. This class enhances the
normal CORBA object class in three important ways.
Firstly, the Component class enables CORBA objects to be
created with multiple interfaces (stream or operational
interfaces) as required by the extended programming model
(see section 3 above). Secondly, the class provides access to
a MetaComponent interface. This meta-interface supports
operations to inspect and adapt the associated object graph
structure (see sections 5.2 and 5.3 below). Thirdly, the
Component class allows the programmer to raise queries
about the various interfaces supported by an object, and to
ascertain whether a given stream interface will accept a

local binding, i.e. will it accept a given media type. Note
that processing objects are also descended from the
Component class. In this way, it is also possible to
recursively open up the implementation of, for example, a
filter object as an object graph. Again, however, some
processing objects will be primitive and will not support
inspection and adaptation.

5.2. Support for Inspection
Object graphs represent a powerful and intuitive way for the
programmer to inspect the implementation of open
bindings. The meta-interface provides one operation,
getConfiguration, which returns a representation of the
object graph. By traversing this graph structure, the
programmer can identify how the individual components
are connected together. For example, one could ascertain
that a buffering component was connected up between the
output stream interface of a transport binding object and the
input a decoder object. This level of information allows
more educated decisions on how adaptation mechanisms are
to be applied. An example in this case would be the removal
of the buffering component to reduce end-to-end latency on
detecting a drop in the level jitter. To convey the functional
representation of a binding object in a declarative way
would certainly be a non-trivial task. Note that every
component in the graph also has a unique name, referred to
as its role. This role can be used to access the object
directly, using the getObjectByRole method.

Once accessed, a component in the graph can be queried
with regard to its type (for example DelayBuffer), its
location and the number of stream interfaces that it
possesses. In addition the various control interfaces that
these nodes support can be interrogated in an interface-
specific manner. As described above, components also
support an event notification mechanism. An application
can register for events from a particular component and
then receive a back-call when this event occurs. This feature
can be used for example to allow an application to monitor
the level of packet loss experienced over the current
network.

Finally, the mechanisms described below can be used to
insert arbitrary QoS monitors into an object graph giving
further information on the behaviour of the binding. An
example of this type of object would be one that measured
the drift in synchronization between paired audio and video
streams.

5.3. Support for Adaptation

5.3.1. Overview
As mentioned above, there are two approaches to
adaptation. Firstly, an application can modify the behaviour
of a component without altering the structure of the object

Component Object

Interface Mapping

Component Interface

Local Binding

Open Binding Interface

Figure 3: Open Bindings

graph, e.g. to counteract mild fluctuations in QoS such as
the modification of the cutoff point of a media filtering
component residing within a binding object. Secondly the
programmer can dynamically reconfigure the object graph,
changing its structure in some way by adding or removing
components, or by reconnecting the existing components in
a different manner. This type of change would be used to
combat more significant changes in QoS such as a change
in network type from Ethernet to a wireless GSM link. In
this case, it is more sensible to remove inappropriate
components and replace them with new components more
suited to the new environment. We will now examine these
two classes of change in turn.

5.3.2. Modification of Behaviour
This is the simplest form of adaptation. To modify the
behaviour of a component, the application must first obtain
the interface for this component (e.g. through the role of the
component). Once the application has obtained this
interface, the programmer can make changes to that
component such as increasing the size of a buffering
component or altering the compression strategy of an
MPEG component. The precise interface is clearly
dependent of the object class of the component.

Note that the meta-interface of the corresponding binding
object is free to decide upon the level of adaptation that it
will allow. It may choose to make all components within its
object graph visible to change, or it may choose to restrict
changes to certain components, such as a QoS filter above

5.3.3. Dynamic Reconfiguration
As a component’s implementation is modelled as an object
graph the obvious types of changes that may be applied are
the addition and removal of nodes and arcs to/from this
graph. New component objects may be added and local
binding arcs added to the graph as this component is
connected to the others. Similarly it may be useful to
remove whole components and their associated local
bindings when they are no longer needed, an example being
a jitter buffer object which would be removed when moving
from wireless to fixed networks.

The basic operations for manipulating object graphs are as
shown in table 1.

Operation Effect
addObject A new object to be added to the object graph

(initially unbound).
removeObject Removes an object from the object graph,

deleting any associated local bindings.
LocalBind Creates a new arc in the graph between two

specified interfaces.
BreakBind Removes an arc from the graph.

Table 1: Basic graph operations.

The above operations provide a means of changing the
functional structure of an implementation object graph.
However unhindered changes could result in the functional
characteristics of the binding object being destroyed. For
example all component objects could be unbound leaving a
disconnected graph with no path from input to output
interfaces. For this reason, all changes to an implementation
object graph are requested through the meta-interface of the
parent component, thereby allowing it to reject those which
it deems undesirable.

In some cases, however, this may prevent perfectly
reasonable changes from being effected. For example, it
may be desirable to replace one processing object with
another. One reasonable course of action would be: (i) to
add the new object to the graph, (ii) destroy the local
bindings connecting the old object to other objects, and (iii)
create new local bindings connecting the new processing
object into the media flow allowing the graph to operate as
before. However the meta-interface may reject step (ii) on
the grounds that it will create a hole in the graph preventing
media from flowing. There is no way for the meta-interface
to know that eventually the new processing component will
be connected up, therefore allowing the graph to flow again.

To remedy this situation, we provide compound operations
on the Component meta-interface - see Table 2.

Operation Effect
insert Allows one component (offering an incoming and

outgoing interface) to be inserted between two
existing components in the graph, e.g. to insert a
filtering object between a codec and a transport
binding object.

cut Performs the opposite action to insert, removing a
component from a pipeline and connecting up the
predecessor and successor components directly.

replace Replaces one component with a similar component
(the new component inherits the role of the original
component).

redirect Redirects a local binding to an alternative
interface, e.g. to send continuous media data down
a new path of control more suited to new network
conditions

Table 2: Compound graph operations.

The use of compound operations allows a meta-interface to
cushion or reduce the undesirable effects of these changes
where appropriate. For example the replacement of a
boundary component will destroy the corresponding
interface mapping, therefore resulting in the local binding of
an external interface being broken. The effects of this filter
upwards through the hierarchy of object graphs. If the
compound Replace operation was used to replace the
existing object with a new one then this replacement could
be done atomically allowing the local binding between

external stream interfaces to remain intact.

By defining a variety of operations, the Component meta-
interface is able to choose the level of access that it will
allow. For example a particular binding object may open up
its implementation for complete inspection but only allow
one particular QoS filter component to be replaced after it
has ascertained that the replacement object is acceptable.

6. A SIMPLE EXAMPLE
As an example of the use of object graphs to support
adaptation, we consider a simple unidirectional point-to-

point video binding object. The binding object is intended to
encapsulate the end-to-end delivery of multimedia data and
so it performs the compression, transmission and
decompression of video data: at one end it consumes raw
video, at the other raw video is produced for consumption
by the sink object. Initially the computer is connected by a
high performance fixed network and so full broadcast
quality MPEG video may be sent across the network with
little or no perceived degradation in quality.

At some point however the computer may move to a
wireless LAN, such as WaveLAN, with greatly reduced
bandwidth and increased jitter in traffic. To address this
change in connectivity it is necessary to use the meta-
interface of the binding object to locate the video
compression object and cause it to reduce the bandwidth of
compressed video. Similarly to address the increase in
perceived jitter we insert a jitter compensation buffer object
between the transport and video decompressor objects.

At some later stage the computer moves out of range of the
WaveLAN base station and accordingly a GSM dialup link
is used to reach the fixed partition of the network. Rather
than change the MPEG compression parameters, it is now
more prudent to replace the video compressor object with
one more suited to low-bandwidth operation such as an
H.263 encoder object. Similarly the decompressor object
would be changed from an MPEG decompressor to a H.263
decompressor. This full range of adaptation mechanisms is
illustrated in figure 4.

More extreme adaptations would involve opening up the
transport binding object to alter protocol characteristics

using the aforementioned mechanisms in Ensemble. This
type of adaptation would be used to achieve maximum
performance over a network such as GSM where packet
headers can consume a significant percentage of available
bandwidth.

Obviously there is a wide variation in the perceived quality
of video produced by the binding object: from broadcast
quality down to H.263. Nonetheless, the example shows
that a constant uninterrupted video stream is possible
regardless of network connectivity.

7. IMPLEMENTATION APPROACH
We have implemented an experimental middleware
platform featuring the concept of explicit open bindings.
This platform is based on a CORBA implementation from
Chorus Systems, called COOL-ORB [9]. This runs over a
variety of computers and operating systems; our
experimental testbed consists of laptop PCs running
Windows NT 4.0. These are interconnected by a variety of
networks, including Switched Ethernet, WaveLAN and
GSM.

In order to support open bindings, the COOL platform has
been extended as shown in figure 5.

Currently COOL-ORB supports two basic communications
infrastructures: TCP/IP and CHORUS IPC. In order to
support higher degree of configurability, we have extended
COOL with a third communications infrastructure based on
Ensemble/ Maestro [10]. Ensemble, developed at Cornell
University, is the successor to Horus [23]. The software is
written in Objective Caml (a dialect of ML) and provides a
modular framework for constructing protocol stacks,
specifically protocol stacks for group communication
(point-to-point communication is treated as a special case).
The role of Maestro is to offer C++ bindings for the
Ensemble implementation.

In Ensemble, a protocol profile is built from a stack of
modules. Ensemble offers a library of such modules
including UDP, packet loss detection, data encryption and
flow control. The software enables the programmer to select
a particular protocol profile at bind time by providing a list
of the component modules. For example, the following
protocol profile provides a stack offering virtual
synchronous group communication:

Video
Source

MPEG
encoder

RTP
sender

UDP/IP Binding
MPEG

decoder
RTP

receiver

RTP Binding

Delay
buffer

H.263
encoder

Video
Render

H.263
decoder

Binding Object Control Interface

Figure 4: Adaptation using Open Bindings

Extended CORBA API

Open Bindings

Ensemble/Maestro

Operating System

COOL/ORB

Adaptive Multimedia Application

Figure 5: The extended CORBA platform

vsync= [Gmp;Sync;Heal;Migrate;Switch;Frag;Suspect;Flow]

Ensemble also supports run-time adaptation, in terms of
modification of modules and also dynamic reconfiguration.
For example, the parameters for flow control can be
modified at run-time. Similarly, Ensemble allows the
programmer to switch to an alternative protocol stack at any
point during an interaction.

We exploit this configurability by using Ensemble to
provide a set of low level open bindings (operational and
stream). The internal details of such open bindings are
presented as object graphs, thus providing a consistent style
of adaptation throughout the architecture.

For operational bindings, the standard CORBA bind call has
been extended to enable the protocol stack to be specified at
bind-time. The format of the new bind call is as follows:

void COOL_bind(const ServerImpl& server,
Server_ptr& inter, COOL_ComCtrl_ptr& ctrl,
char *comName, CORBA_Environment& _env);

The first two parameters specify the object implementation
and pointer to be used to invoke this object respectively.
The third parameter is then the control interface for the
resultant open binding. The comName parameter specifies
the preferred protocol suite to be used, followed by a
specification of a protocol stack (if Ensemble). The final
parameter is a standard CORBA environment variable.

As an example, the following call establishes an explicit
binding between to the object designated by serverImpl:

COOL_bind(serverImpl, server, ctrlIntf,
"Ensemble::Gmp:Sync:Heal:Switch:Frag:
Suspect:Flow", env);

For stream bindings, we provide a set of binding factories
offering pre-configured Ensemble stacks for continuous
media interaction. Through the control interface of these
bindings it is possible to modify a component object or
switch to an alternative stack (as for operational bindings).
Note that it is relatively straightforward to extend the range
of bindings by constructing new binding factories from
existing components. Prominent among the components are
a range of filter objects for common media formats.

8. RELATED WORK
There is currently considerable ongoing research in the area
of extensible and adaptable operating systems. Key
examples include Spin [1], Exokernel/Aegis [8] and Spring
[19]. The aim of this work is to introduce flexibility in
operating system structures to allow, for example, the
addition of new services. In general, however, this research
has not considered the requirements of mobile multimedia
applications. In addition, we prefer to implement adaptation
at a different level, i.e. in middleware. This offers a
platform independent means of achieving adaptability.

The specific concept of object graphs was introduced by
researchers at JAIST in Japan [11]. As with our approach, a
system is decomposed into a graph of objects. The system
also supports a model of information flow between objects.
Adaptation is handled through the use of control scripts
written in TCL. Although similar to our proposals, the
JAIST work does not provide access to the internal details
of communication objects. Furthermore, the work is not
integrated into a middleware platform. The concept of
object graphs is also used in Microsoft’s ActiveMovie
software. This software, however, does not address
distribution of object graphs. In addition, the graph is not re-
configurable during the presentation of a media stream.
Finally, object graphs feature in a DEIMOS, a related
project at Lancaster University investigating adaptable and
extensible operating systems [4].

A number of researchers have considered the impact of
multimedia on middleware [5, 12, 13] and the impact of
mobility on middleware [7, 21]. In general, these activities
do not provide as comprehensive an approach to adaptation
as we feel is necessary. However researchers at CNET have
developed an extended CORBA platform to support
multimedia [2]; this platform features the concept of
recursive bindings and has been highly influential in our
research.

Finally, recent work in the OMG forum has addressed the
need for multimedia streams in CORBA. In particular, a
revised proposal has recently been developed in response to
a Request for Proposals (RFP) for the Control and
Management of Audio/ Visual Streams (issued by the
Telecommunication Special Interest Group). However, the
current proposals do not explicitly address the issues of
openness and adaptation that are the central concerns in our
research.

9. CONCLUSIONS
This paper has considered the design of middleware
platforms to support mobile multimedia applications and
has suggested that future middleware platforms should be
adaptive in order to address the diverse requirements
imposed by such applications. The paper has also outlined
the design of an adaptive middleware platform, based on
CORBA, but extended with the concepts of open bindings
and object graphs.

The advantages of this approach are that, firstly,
applications can be made aware of arbitrary events within
the platform, and, secondly, applications have a high degree
of flexibility in the way they respond to events. There are
also potential disadvantages with the proposed approach.
For example, the programmer can be faced with added
complexity in responding to events although this can be
controlled by the provision of standard policies in

application libraries. Secondly, there is a danger of
compromising the integrity of systems by providing low
level access although this problem is less serious at the
middleware level than at the operating system level. We
also believe that object graphs in open bindings provide a
sufficiently constrained style of interaction to avoid this
problem. Finally, it is arguable that the flexibility provided
by object graphs is gained at the expense of efficiency. The
overheads of object graphs can however be minimised by
careful engineering. This is aided by the user level
implementation where most inter-object interaction is by
procedure calls.

Ongoing research in Adapt is looking in more detail at the
support required by operational and stream bindings and
also at the provision of multi-party bindings exploiting the
facilities offered by Ensemble.

ACKNOWLEDGEMENTS
The work described here is being carried out in the Adapt
Project, a collaboration between Lancaster University and
BT Labs sponsored by the EPSRC (Research Grant
GR/K72575). BT Labs are also contributing towards the
cost of a PhD studentship attached to the project. Particular
thanks are due to our collaborators at BT Labs namely
Andrew Grace, Alan Smith and Steve Rudkin.

REFERENCES
 [1] Bershad, B.N., S. Savage, P.Przemyslaw, E.G. Sirer, M.E.

Fiuczynski, D. Becker, C. Chambers, S. Eggers, S., "Extensibility,
Safety and Performance in the SPIN Operating System". Proc. 15th

ACM SOSP, pp267-284, Copper Mountain CO, USA, December 1995.

 [2] Blair, G.S., J.B. Stefani, “Open Distributed Processing and
Multimedia”, Addison-Wesley, 1998.

 [3] Blair, G.S., Coulson, G., Davies, N., Robin, P. and Fitzpatrick, T.,
"Adaptive Middleware for Mobile Multimedia Applications", Proc.
NOSSDAV, St Louis, Missouri, USA., pp 259-273, May 19-21, 1997.

[4] Clarke, M., Coulson, G., "An Architecture for Dynamically
Extensible Operating Systems". To appear in Proc. ICCDS'98,
Annapolis MD, USA, May 1998.

[5] Coulson, G., Blair, G.S., Horn, F., Hazard, L, Stefani, J.B.,
"Supporting the Real-Time Requirements of Continuous Media in
Open Distributed Processing", Computer Networks and ISDN Systems,
Vol. 27, No. 8, 1995.

 [6] Coulson, G. and Waddington, D.G., "A CORBA Compliant Real-
Time Multimedia Platform for Broadband Networks", Proc. TRENDS
96, Aachen, Germany, September 1996.

[7] Davies, N., A. Friday, G.S. Blair, and K. Cheverst, “Distributed
Systems Support for Adaptive Mobile Applications”, ACM Mobile
Networks and Applications, Special Issue on Mobile Computing -
System Services, Vol. 1, No. 4, 1996.

[8] Engler, D.R., M.F. Kaashoek, J. O'Toole jnr, J., "Exokernel: An
Operating System Architecture for Application-Level Resource
Management". Proc. 15th ACM SOSP pp 251-266, December 1995.

[9] Habert, S., L. Mosseri, V. Abrossimov, “COOL: Kernel Support for
Object-Oriented Environments”, Proceedings of ECOOP/OOPSLA

Conference, Ottawa, Canada, October 1990.

[10] Hayden, M., "The Ensemble System", PhD Dissertation, Dept. of
Computer Science, Cornell University, USA, 1997.

[11] Hokimoto, A., T. Nakajima, “An Approach for Constructing Mobile
Applications using Service Proxies”, Proc. 16th ICDCS’96, IEEE,
May 1996.

[12] Interactive Multimedia Association, "Multimedia System Services -
Part 1: Functional Specification (2nd Draft)", IMA Recommended
Practice, September 1994.

[13] Interactive Multimedia Association, "Multimedia System Services -
Part 2: Multimedia Devices and Formats (2nd Draft)", IMA
Recommended Practice, September 1994.

[14] Kiczales, G., J. des Rivières, D.G. Bobrow, “The Art of the
Metaobject Protocol”, MIT Press, 1991.

[15] Ledoux, T., “Implementing Proxy Objects in a Reflective ORB”,
Proc. ECOOP’97 Workshop on CORBA: Implementation, Use and
Evaluation, Jyväskylä, Finland, June 1997.

[16] Maes, P., “Concepts and Experiments in Computational Reflection”,
In Proc. OOPSLA’87, Vol. 22 of ACM SIGPLAN Notices, pp147-155,
ACM Press, 1987.

[17] Manola, F., "MetaObject Protocol Concepts for a "RISC" Object
Model", Technical Report TR-0244-12-93-165, GTE Laboratories, 40
Sylvan Road, Waltham, MA 02254, USA, December 1993.

 [18] McAffer, J., “Meta-Level Architecture Support for Distributed
Objects”, In Proceedings of Reflection 96, G. Kiczales (ed), pp39-62,
San Francisco, 1996.

[19] Mitchell, J.G., J.J. Gibbons, G. Hamilton, P.B. Kessler, Y.A.
Khalidi, P. Kougiouris, P.W. Madany, M.N. Nelson, M.L. Powell and
S.R. Radia, "An Overview of the Spring System". Proc. IEEE
COMPCON'94, February 1994.

[20] Rao, R., “Implementational Reflection in Silica”, Proceedings of
ECOOP’91, Lecture Notes in Computer Science, P. America (Ed),
pp251-267, Springer-Verlag, 1991.

[21] Schill, A., and S. Kümmel, “Design and Implementation of a
Support Platform for Distributed Mobile Computing”, Distributed
Systems Engineering Vol. 2, No. 3, pp128-141, 1995.

[22] Singhai, A., Sane, A., Campbell, R., “Reflective ORBs: Supporting
Robust, Time-critical Distribution”, Proc. ECOOP’97, Jyväskylä,
Finland, June 1997.

[23] van Renesse, R., K.P. Birman, S. Maffeis, “Horus: A Flexible Group
Communications Service”, Communications of the ACM, April 1996.

[24] Watanabe, T., A. Yonezawa, “Reflection in an Object-Oriented
Concurrent Language”, Proc. OOPSLA’88, Vol. 23 of ACM
SIGPLAN Notices, pp306-315, ACM Press, 1988.

[25] Yokote, Y., “The Apertos Reflective Operating System: The
Concept and Its Implementation”, Proc. OOPSLA’92, Vol. 28 of ACM
SIGPLAN Notices, pp414-434, ACM Press, 1992.

