
1

Work group meeting no. 3
- Tuning using policies

INF5040 (Distributed systems)

Name: Sten L. Amundsen
Date: 16 September 2004

e-mail: stena@simula.no

Agenda

• Tuning using POA policies and POA architecture

• Example: Concurrency model

• Example: Data objects

• Tuning using POA policies and POA architecture

• Example: Concurrency model

• Example: Data objects

2

CORBA strong points
• Integration between systems/applications are areas where middleware

products has a clear business case.

• System integration specialist (consultants) is hyping Web-services
(SOAP) as the SOLUTION:

• XML text base messages are large (-)
• RPC have long run trip delays (-)
• Not tuneable (-)
• Easy to implement (+)

• CORBA a good solution for system integration:
• Can be tuned
• Language independent

• Integration between systems/applications are areas where middleware
products has a clear business case.

• System integration specialist (consultants) is hyping Web-services
(SOAP) as the SOLUTION:

• XML text base messages are large (-)
• RPC have long run trip delays (-)
• Not tuneable (-)
• Easy to implement (+)

• CORBA a good solution for system integration:
• Can be tuned
• Language independent

CORBA in use
Legacy system (e.g. Cobolt, SmallTalk)

Database

Customer

Accounting
department Finance system

E-Commerce Ordering and shipping
system

Internet

CORBA

CORBA

3

Tuning possibilities

• One can tune both:
• ORB

• POA

• One can tune both:
• ORB

• POA

Example of tuning:

• Concurrency model

• Data objects

• Object lifetime

• Connection time-out

• End-point/protocol

• Trace level for protocols

• Retry mechanisms

• Message size

• Interceptors

• Automatic server shutdown

• etc.

Example of tuning:

• Concurrency model

• Data objects

• Object lifetime

• Connection time-out

• End-point/protocol

• Trace level for protocols

• Retry mechanisms

• Message size

• Interceptors

• Automatic server shutdown

• etc.

Overview rootPOA policies

Policy Default setting Comment

IdAssignment SYSTEM_ID POA sets object id.

IdUniqueness UNIQUE_ID Each object id is uniquely
mapped to servant.

ImplicitActivation IMPLICIT_ACTIVATION POA allocated object id when
servant registered with POA

Lifespan TRANSIENT Non-persistent objects

RequestProcessing USE_ACTIVE_OBJECT_MAP_ONLY POA routes requests.

ServantRetention RETAIN Objects reference are kept
in POA after processing
request.

Thread ORB_CTRL_MODEL ORB handles threading (multi-
thread)

• The root POA has the following policy settings, which cannot be
changed.

• The root POA has the following policy settings, which cannot be
changed.

4

Overview POA policies

POA policy factories Policy options (d) = default

IdAssignment SYSTEM_ID (d)
USER_ID

IdUniqueness UNIQUE_ID (d)
MULTIPLE_ID

ImplicitActivation NO_IMPLICIT_ACTIVATION (d)
IMPLICIT_ACTIVATION

Lifespan TRANSIENT (d)
PERSISTENT

RequestProcessing USE_ACTIVE_OBJECT_MAP_ONLY (d)
USE_DEFAULT_SERVANT
USE_SERVANT_MANAGER

ServantRetention RETAIN (d)
NON_RETAIN

Thread ORB_CTRL_MODEL (d)
SINGLE_THREAD_MODEL

• POA has default settings, which can be changed• POA has default settings, which can be changed

POA architecture
rootPOA

POA Alfa
POA Beta

POA manager

POA manager

POA alfa

POA Manager

POA beta

POA Charlie
POA Manager

POA charlie

POA Manager

Servant

Servant

Servant

Servant

Servant

Object id
Default
servant

Object id

ServantObject id

ServantServant
manager

Object id
Object id

Active
object map

5

POA policy categories (1)

Request processing
• Active object map; Table in the POA over active CORBA

objects/servants
USE_ACTIVE_OBJECT_MAP_ONLY

• Servant manager; Used to manage many servants. Servant has pre
and post methods called by POA to create/destroy servants for the
request.

USE_SERVANT_MANAGER

• Default servant; Object/servant for incoming requests that are not for
object ids in object map or to servant manager.

USE_DEFAULT_SERVANT

Request processing
• Active object map; Table in the POA over active CORBA

objects/servants
USE_ACTIVE_OBJECT_MAP_ONLY

• Servant manager; Used to manage many servants. Servant has pre
and post methods called by POA to create/destroy servants for the
request.

USE_SERVANT_MANAGER

• Default servant; Object/servant for incoming requests that are not for
object ids in object map or to servant manager.

USE_DEFAULT_SERVANT

POA policy categories (2)

ID assignment
• POA assigns object IDs to servants. SYSTEM_ID

• Application assigns object id to servants. USER_ID

Servant retention
• POA keeps object id in active object map. RETAIN

• Servant manager (or default servant manager) keeps or creates objects for
handling the incoming request. NON_RETAIN

ID assignment
• POA assigns object IDs to servants. SYSTEM_ID

• Application assigns object id to servants. USER_ID

Servant retention
• POA keeps object id in active object map. RETAIN

• Servant manager (or default servant manager) keeps or creates objects for
handling the incoming request. NON_RETAIN

6

POA policy categories (3)

ID uniqueness
• Object id only refers to one servant UNIQUE_ID

• Servant registered with POA with this policy can support requests for a range
of object ids, i.e. a (default) servant manager MULTIPLE_ID

Lifespan
• Servants registered on POA with this policy are removed when server is

shutdown. TRANSIENT

• Servants registered on POA with this policy are persistent, i.e. stored between
restarts. PERSISTENT

ID uniqueness
• Object id only refers to one servant UNIQUE_ID

• Servant registered with POA with this policy can support requests for a range
of object ids, i.e. a (default) servant manager MULTIPLE_ID

Lifespan
• Servants registered on POA with this policy are removed when server is

shutdown. TRANSIENT

• Servants registered on POA with this policy are persistent, i.e. stored between
restarts. PERSISTENT

POA policy categories (4)

Thread
• POA and it’s servants are running in single thread. CTRL_MODEL

• POA decides the number of threads. SINGLE_THREAD_MODEL

ImplicitActivation
• POA allocate object id when servant is registered with the POA.

IMPLICIT_ACTIVIATION

• Application decided the object id, which is given to the POA for storing in the
active object map. NO_IMPLICIT_ACTIVATION

Thread
• POA and it’s servants are running in single thread. CTRL_MODEL

• POA decides the number of threads. SINGLE_THREAD_MODEL

ImplicitActivation
• POA allocate object id when servant is registered with the POA.

IMPLICIT_ACTIVIATION

• Application decided the object id, which is given to the POA for storing in the
active object map. NO_IMPLICIT_ACTIVATION

7

Concurrency models

• A concurrency model describes how the
system executes requests, i.e. thread
handling.

• Policy can be set for the ORB or per POA.

• Two models:
• Single-thread concurrency model

• Multi-thread concurrency model

• A concurrency model describes how the
system executes requests, i.e. thread
handling.

• Policy can be set for the ORB or per POA.

• Two models:
• Single-thread concurrency model

• Multi-thread concurrency model Only multi-threaded
supported in ORBacus
4.1.0 for Java.

Concurrency model -Single threaded

• Processing of requests handled
by one thread.

• Thread-safe (i.e. no need to
synchronise methods)

• Fast code (no overhead for
start/stop threads and swapping
thread context)

• Require queuing of request to
avoid dead-lock.

• Processing of requests handled
by one thread.

• Thread-safe (i.e. no need to
synchronise methods)

• Fast code (no overhead for
start/stop threads and swapping
thread context)

• Require queuing of request to
avoid dead-lock.

Client Server

execute()

getData()
T1

T1

No thread to process call back

ORBacus supports single threaded model
in the C++ implementation

ORBacus supports single threaded model
in the C++ implementation

8

Concurrency model -Multi threaded

• One or more dedicated
threads per request.

• Easy to develop nested
processes including call backs

• Dead-lock safe

• Prudent to synchronisation
problems of states and data.

• High number of threads
results in slow code.

• One or more dedicated
threads per request.

• Easy to develop nested
processes including call backs

• Dead-lock safe

• Prudent to synchronisation
problems of states and data.

• High number of threads
results in slow code.

Client Server

execute()

getData()
T1

T1

T2

T1

T1

return

return

Concurrency model -setting policy
• Multi-threaded default concurrency model.

• In ORBacus can tune further by setting:
• Thread-per-client on the server side
• Thread-per-request
• Thread pool size

• Policy can be set for the POA using a policy object.

• For ORB properties uploaded from a config file or hard-coded.

• Multi-threaded default concurrency model.

• In ORBacus can tune further by setting:
• Thread-per-client on the server side
• Thread-per-request
• Thread pool size

• Policy can be set for the POA using a policy object.

• For ORB properties uploaded from a config file or hard-coded.

9

Concurrency model -setting policy
- ORB

• Example with hard-coded • Example with hard-coded

java.util.Properties properties = System.getProperties();
properties.put(”ooc.orb.oa.conc_model”, ”thread_pool”);
properties.put(”ooc.orb.oa.thread_pool”, ”5”);

//start ORB in the JVM that has the new properties
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, properties)

java.util.Properties properties = System.getProperties();
properties.put(”ooc.orb.oa.conc_model”, ”thread_pool”);
properties.put(”ooc.orb.oa.thread_pool”, ”5”);

//start ORB in the JVM that has the new properties
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, properties)

Concurrency model -setting policy
- POA

ThreadPolicy.create_thread_policy (ThreadPolicyValue value);ThreadPolicy.create_thread_policy (ThreadPolicyValue value);

• Policy is an object.

• Set policy in POA when starting the POA or after:
• ORB_CTRL_MODEL (d)

• SINGLE_THREAD_MODEL

• Root-POA can not change concurrency model.

• Policy is an object.

• Set policy in POA when starting the POA or after:
• ORB_CTRL_MODEL (d)

• SINGLE_THREAD_MODEL

• Root-POA can not change concurrency model.

Operation on the POA class.

10

Data objects

• Data objects represents data
from database/flat file.

• Large systems can’t have
large volume of data objects.

• Data objects represents data
from database/flat file.

• Large systems can’t have
large volume of data objects.

• POA policies can assist in automatic instantiating and
removing data objects.

• POA policies of interest:
• IdAssignments

• ServerRetention

• RequestProcessing

• POA policies can assist in automatic instantiating and
removing data objects.

• POA policies of interest:
• IdAssignments

• ServerRetention

• RequestProcessing

Data object – design pattern

• General solution is the design pattern Data Access Object
(DAO).

• General solution is the design pattern Data Access Object
(DAO).

Represents database
or flat file

Abstracts the data access
implementation from the
business logic.

Used to transfer the data
to/from client.

BusinessObject DataAccessObject

DataSource

ValueObject

<<encapsulate>>

<<creates/uses>>

<<obtain/modifies>>

<<uses>>

11

Data object –design pattern -sequence

For large volumes of
data must keep the
number of objects
low (memory usage
and performance).

For large volumes of
data must keep the
number of objects
low (memory usage
and performance).

BusinessObject DataAccessObject DataSource ValueObj

create

GetData

GetData

Create

Return Value Object

SetProperty

SetProperty

SetData

GetProperty

GetProperty

StoreData

Interaction
retrieving data.

Interaction
store data.

Data object – CORBA

• POA policies can be combined.

• Right combination give automatic generation and
removing of objects in the DAO pattern.

• Clue is:
• define an POA architecture
• Set POA policies differently for business logic compared

to GUI and data objects.

• POA policies can be combined.

• Right combination give automatic generation and
removing of objects in the DAO pattern.

• Clue is:
• define an POA architecture
• Set POA policies differently for business logic compared

to GUI and data objects.

12

Exercise

Write two slides with:

1. The POA
architecture

2. Specified POA
policies

Write two slides with:

1. The POA
architecture

2. Specified POA
policies

• Case from UiO. See paper:
http://genomebiology.com/content/pdf/gb-
2000-1-5-research0010.pdf

• Used CORBA together with a data
model suitable for large databases
for DNA and RNA sequences.

• Case from UiO. See paper:
http://genomebiology.com/content/pdf/gb-
2000-1-5-research0010.pdf

• Used CORBA together with a data
model suitable for large databases
for DNA and RNA sequences.

Exercise - hints

• Client submit to CORBA server the id to the DNA (or RNA) sequence,
which then invokes a factory object (or a manager) representing the
database.

• Consider only the interaction between factory/manager (Embl class) and
the data access object (EmblSeq class).

• Combine the two patters Factory and DAO.

• Client submit to CORBA server the id to the DNA (or RNA) sequence,
which then invokes a factory object (or a manager) representing the
database.

• Consider only the interaction between factory/manager (Embl class) and
the data access object (EmblSeq class).

• Combine the two patters Factory and DAO.

Embl EmblSeqClient

getEmblSeq(in bio-seq-id) Create(in bio-seq-id)

return EmblSeq

