- research laboratory
Agenda

Tuning using POA policies and POA architecture
Example: Concurrency model

Example: Data objects

simula

CORBA strong points

- Integration between systems/applications are areas where middleware
products has a clear business case.

. System integration specialist (consultants) is hyping Web-services
(SOAP) as the SOLUTION:

XML text base messages are large (-)
RPC have long run trip delays (-)

Not tuneable (-)

Easy to implement (+)

. CORBA a good solution for system integration:
Can be tuned
Language independent

simula

CORBA in use

Legacy system (e.g. Cobolt, SmallTalk)

Accounting
department

Database

E-Commerce Ordering and shipping
system

CORBA

- research laboratory
Tuning possibilities
- One can tune both:

- ORB
+ POA

Overview rootPOA policies

- The root POA has the following policy settings, which cannot be

changed.
Policy Default setting Comment
IdAssignment SYSTEM_ID POA sets object id.
ldUniqueness UNIQUE_ID Each object id is uniquely
mapped to servant.
ImplicitActivation IMPLICIT_ACTIVATION POA allocated object id when
servant registered with POA
Lifespan TRANSIENT Non-persistent objects
RequestProcessing USE_ACTIVE_OBJECT_MAP_ONLY POA routes requests.
ServantRetention RETAIN Objects reference are kept
in POA after processing
request.
Thread ORB_CTRL_MODEL ORB handles threading (multi-
thread)

simula

Overview POA policies

POA has default settings, which can be changed

Policy options (d) = default

SYSTEM_ID (d)
USER_ID

UNIQUE_ID (d)
MULTIPLE_ID

POA policy factories
ldAssignment

IdUniqueness

ImplicitActivation |
IMPLICIT_ACTIVATION

Lifespan TRANSIENT (d)

PERSISTENT

RequestProcessing
USE_DEFAULT_SERVANT
USE_SERVANT_MANAGER

RETAIN (d)
NON_RETAIN

ORB_CTRL_MODEL (d)
SINGLE_THREAD_MODEL

ServantRetention

Thread

NO_IMPLICIT_ACTIVATION (d)

USE_ACTIVE_OBJECT_MAP_ONLY (d)

simula

POA architecture
Servant

rootPOA

Object id POA alfa
Default //'
POA Alfa servant
POA Beta
POA manager Object id &—»
POA Manager
- (T
POA charlie
(oma rare)
POA beta
Active
object ma
; Servant —-+[ervant | |21 TP,
manager :Object id o-——
Object id - [servant |
POA Charlie———— |{Object id o- [Servant |
POA Manager

POA Manager,

simula

POA policy categories (1)

Request processing

Active object map; Table in the POA over active CORBA
objects/servants
= USE_ACTIVE_OBJECT_MAP_ONLY

- Servant manager; Used to manage many servants. Servant has pre
and post methods called by POA to create/destroy servants for the
request.

= USE_SERVANT_MANAGER

Default servant; Object/servant for incoming requests that are not for
object ids in object map or to servant manager.
= USE_DEFAULT_SERVANT

simula

POA policy categories (2)

ID assignment
« POA assigns object IDs to servants. = SYSTEM_ID
Application assigns object id to servants. = USER_ID

Servant retention
POA keeps object id in active object map. & RETAIN

Servant manager (or default servant manager) keeps or creates objects for
handling the incoming request. & NON_RETAIN

POA policy categories (3)

ID uniqueness
- Object id only refers to one servant = UNIQUE_ID

Servant registered with POA with this policy can support requests for a range
of object ids, i.e. a (default) servant manager =& MULTIPLE_ID

Lifespan

Servants registered on POA with this policy are removed when server is
shutdown. = TRANSIENT

Servants registered on POA with this policy are persistent, i.e. stored between
restarts. =» PERSISTENT

POA policy categories (4)

Thread

POA and it’s servants are running in single thread. = CTRL_MODEL
POA decides the number of threads. =® SINGLE_THREAD_MODEL

ImplicitActivation

POA allocate object id when servant is registered with the POA.
= IMPLICIT_ACTIVIATION

- Application decided the object id, which is given to the POA for storing in the
active object map. = NO_IMPLICIT_ACTIVATION

simula

Concurrency models

- A concurrency model describes how the
system executes requests, i.e. thread
handling.

. Policy can be set for the ORB or per POA.

. Two models:

- Single-thread concurrency model
- Multi-thread concurrency model

simula

Concurrency model -Single threaded

Processing of requests handled

by one thread. Client Server
Thread-safe (i.e. no need to ﬁfﬂ execute()

synchronise methods)
getData()

Fast code (no overhead for
start/stop threads and swapping
thread context) /‘

) . No thread to process call back
- Require queuing of request to

avoid dead-lock.

ORBacus supports single threaded model
in the C++ implementation

simula

Concurrency model -Multi threaded

One or more dedicated

threads per request. Client Server
T1

Easy to develop nested W execute()

processes including call backs -
getData()

Dead-lock safe

Prudent to synchronisation | T

problems of states and data. | L | return

High number of threads
results in slow code.

simula

Concurrency model -setting policy

- Multi-threaded default concurrency model.

- In ORBacus can tune further by setting:
- Thread-per-client on the server side
Thread-per-request
Thread pool size

- Policy can be set for the POA using a policy object.

- For ORB properties uploaded from a config file or hard-coded.

Concurrency model -setting policy
- ORB

java.util.Properties properties = System.getProperties();
properties.put(”ooc.orb.oa.conc_model”, "thread_pool™);
properties.put(”ooc.orb.oa.thread_pool”, ”5”);

/Istart ORB in the JVM that has the new properties
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, properties)

Concurrency model -setting policy
- POA

Operation on the POA class.

\

!

ThreadPolicy.create_thread_policy (ThreadPolicyValue value);

Data objects

- Data objects represents data -

Transaction Business

from databasef/flat file. Processing ieigence
. I Content
Manageability Management
. Large systems can’t have Reliability Data Integration

large volume of data objects.

Oracle9i Database

- POA policies can assist in automatic instantiating and
removing data objects.

- POA policies of interest:
- IdAssignments
ServerRetention
RequestProcessing

Data object — design pattern

DataSource Represents database
or flat file

ol

BusinessObject| <uses>> DataAccessObject f AN
o - Abstracts the data access
implementation from the

business logic.

<<encapsulate>>

<<creates/uses>>

_________________ ValueObject Used to transfer the data
<<obtain/modifies>>] to/from C|ient_

10

Data object —design pattern -sequence

BusinessObject G DataAccessObject H DataSource ﬂ ValueObj ‘
/ create~____ |
/ GetData
i
Interaction ! GetData
retrieving data. 1
i Create
=~ 1
~—_
=\ Return Value Object
,l SetProperty
v
/ t
! SetProperty
Interaction !
store data. ! SetData
- : GetProperty
S~a! 1
~<
N GetProperty
StoreData

Data object — CORBA

- POA policies can be combined.

« Right combination give automatic generation and
removing of objects in the DAO pattern.

+ Clueis:
- define an POA architecture
- Set POA policies differently for business logic compared

to GUI and data objects.

11

Exercise
. Case from UiO. See paper: Write two slides with:
http://genomebiology.com/content/pdf/gb-
2000-1-5-research0010.pdf 1. The POA
architecture
- Used CORBA together with a data . Specified POA
model suitable for large databases policies

for DNA and RNA sequences.

- research laboratory
Exercise - hints

» Client submit to CORBA server the id to the DNA (or RNA) sequence,
which then invokes a factory object (or a manager) representing the
database.

- Consider only the interaction between factory/manager (Embl class) and
the data access object (EmblSeq class).

- Combine the two patters Factory and DAO.

Client Embl EmblSeq

getEmblISeq(in bio-seq-id), Create(in bio-seg-id)

return EmbISeq

12

