
08.11.2007

1

Mobile middleware
CARISMA and MADAM

Torkild Retvedt – Martin Øinæs Myrseth

Mobile middleware

 Context changes are frequent

 Mobile devices have limited resources

◦ Limits complexity and overhead of context

change handling

◦ Context awareness has an impact on system

resources and service quality

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

2

CARISMA
Context-Aware Reflective mIddleware

System for Mobile Applications

Introduction to CARISMA

 Provide a context aware layer for mobile

platforms

 Handle context changes

◦ e.g. variation in bandwidth, battery, network

coverage

 Implementation is hidden from both the

user and the developer (transparent)

 Applications may have valuable

information about contexts

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

3

The Reflective Model

 Mobile devices changes context rapidly

 Provide an abstraction of the middleware

 Allow applications to dynamically inspect

and/or change middleware behavior

 Context configurations choose what

policies are applied to a service

Martin Øinæs Myrseth - Torkild Retvedt

messagingService

plainMsg

bandwidth > 40%

compressedMsg

bandwidth < 40%

Profiles

 Profiles are passed down to the middleware

 Context configurations decides what policies

to apply to a service

 Services are affected by one and only one

policy at a time

 Applications may add

associations, dynamically changing the

behavior of the middleware

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

4

Conflicts

 We divide conflicts into two main

categories

◦ Intraprofile conflicts

 Conflicts exists in a profile of an application on a

single device (local conflict)

◦ Interprofile conflicts

 Conflicts exists between profiles on an application

running on different devices (distributed among

various middleware instances)

Martin Øinæs Myrseth - Torkild Retvedt

Conference Application

 Reminder of next talk

◦ A local service

◦ Service requested when attending a talk

◦ An alert occur while user is interacting with the
device, and attending a talk

◦ Conflict! Each service is delivered using only one
policy

talkReminder

soundAlert

location = outdoor

vibraAlert

location = conferenceRoom

silentAlert

userFocus = on
Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

5

Conference Application cont.

 Exchange of messages

◦ Distributed application

◦ Alice has battery < 40% and Claire has
bandwidth > 50%

 Everyone agree

◦ Alice has battery > 40% or Claire has
bandwidth < 50%

 Interprofile conflict!

% Alice

messagingService

plainMsg

battery < 40%

compressedMsg

battery > 40%

% Claire

messagingService

plainMsg

bandwidth > 50%

compressedMsg

bandwidth < 50%

% Bob

messagingService

plainMsg

Martin Øinæs Myrseth - Torkild Retvedt

Avoiding conflicts

 Dynamicity

◦ Not possible to discover conflicts before they
happen

◦ Ignore conflicts until they are invoked

 Simplicity

◦ Cannot take up to much resources

 Customization

◦ We don’t want to ask applications for solutions
each time a conflict occur

◦ Applications must be able to favor a solution to a
conflict

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

6

Conflict resolution

 All participants must take a collective

choice to use a single policy

 Use microeconomic techniques

◦ The different policies are goods

◦ Applications are consumers

◦ A good scheme to use is the auction protocol

 Greater heterogeneity than simpler schemes

 Parties make decisions independently

◦ Middleware is the auctioneer

Martin Øinæs Myrseth - Torkild Retvedt

Conflict resolution cont.

 Computation of the solution set

◦ Peers need to agree on a common policy

◦ If no common policy is found, conflic cannot be
resolved

◦ All peers must bid in the auction

◦ The policy with the highest sum of bids wins

◦ All auctions are isolated

 Next time same conflict may have a different winning
policy

◦ Policies can be favored

 Applications can tell the middleware that it favors
specific goals within a policy

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

7

Performance
Impact of Reflection

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18 20

m
s

Number of policies
Martin Øinæs Myrseth - Torkild Retvedt

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

8

Performance
Impact of context-awareness

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

1 context, 1 resource

3 contexts, 5 resources

5 contexts, 10 resources

m
s

Number of policies

Martin Øinæs Myrseth - Torkild Retvedt

0

100

200

300

400

500

0 5 10 15 20

2 conflicting policies

5 conflicting policies

10 conflicting policies

Performance
Impact of utility function parameters

m
s

Utility function parameters

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

9

0

500

1000

1500

2000

2500

0 5 10 15 20

Without conflicts

With conflicts

Performance
Impact of conflict resolution mechanism

m
s

Number of policies

Martin Øinæs Myrseth - Torkild Retvedt

0

1000

2000

3000

4000

5000

2 3 4 5 6 7

3 policies, 2 conflicts, 1

context, 1 resource

5 policies, 3 conflicts, 3

contexts, 5 resources

Performance
Impact of conflicts in a distributed setting

m
s

Number of devices

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

10

MADAM
Mobility and ADaptation enAbling Middleware

MADAM – Goals

 Provide software engineers with suitable
means to develop mobile adaptive
applications
◦ Modelling language extensions

◦ Tools

◦ Middleware

 Basis in studies of adaptation requirements
of mobile applications

 Provide a set of reusable adaptation
strategies and adaptation mechanisms

 Use a dynamically reconfigurable component
architecture

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

11

MADAM’s main functions

 Detect context changes

◦ Changes in the operating environment

 Evaluate context changes and make a

decision on what adaptation to perform

◦ Select the best suited application variant

 Implement the adaptation choices

◦ Adapt the running application, invoke the

application variant

Martin Øinæs Myrseth - Torkild Retvedt

Variability

 MADAM uses component frameworks

◦ Composition of component types

◦ Plugging in different component implementations

 Two types of variability

◦ Compositional variability

 Coarse-grained adaptability

 Structural and algorithmic variability

◦ Parameterization

 Fine-grained adaptability

 Modify program variables and behavior

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

12

Variant properties

 Annotate components with properties

discriminate between alternative

component implementations

 Qualify the services components offer

and needs

 Components interact through ports with

attached properties

 Services needed and offered are

properties attached to ports

Martin Øinæs Myrseth - Torkild Retvedt

Component type

 Component implementations plug into a

component type

 Various component implementations

should be comparable

 Component implementations must share

a common set of properties, defined by

the component type

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

13

Variant selection – utility functions

 MADAM uses utility functions for
application variant decision making

 Utility functions assign a scalar value to
every possible application variant as a
function of application properties

 The architect specifies the utility
functions, not the user – hard task

 User has the ability to prioritize certain
needs to allow some level of user
adaptation control

Martin Øinæs Myrseth - Torkild Retvedt

MADAM’s architecture

 Runtime models

◦ At application launch time the middleware
interprets the models the architect specified to
generate the framework architecture model’s
runtime representation.

◦ All components that can plug into the
component framework are identified by the
middleware (described by compile-time models).

◦ The runtime model might be generated only at
launch time for software needing few updates.

◦ Dynamic applications must update the runtime
model while the application is running.

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

14

MADAM’s architecture

 Context manager

◦ Determines properties of interest in evaluation
variants.

◦ Assigning values to properties requires
monitoring of the context since properties relate
to context elements.

◦ Handles context reasoning:

 Aggregation

 Derivation

 Prediction

◦ Passes relevant context information to the
adaptation manager – when appropriate.

Martin Øinæs Myrseth - Torkild Retvedt

MADAM’s architecture

 Adaptation manager

◦ Evaluate the impact of changes on the

application – changes reported from the

context manager

◦ Select an application variant that best suits

the current context and user needs – Utility

functions

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

15

MADAM’s architecture

 Configurator

◦ Reconfiguring an application.

◦ Compares the application instance with new

variant models to derive the reconfiguration

steps.

◦ Might

 Bring components into safe state.

 Delete or replace component instances.

 Instantiate components.

 Transfer states.

Martin Øinæs Myrseth - Torkild Retvedt

MADAM’s architecture

 Core component
◦ Provides platform-independent services for

managing
 Applications

 Components

 Component instances

◦ Includes operations for
 Publication and discovery of component frameworks

and implementations

 Loading, unloading and connecting components

◦ Provides platform-independent access to
execution platform’s resources
 Memory etc.

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

16

MADAM in action

 Two simple case examples

◦ An information service to support janitor inspections.

◦ A video streaming application.

 Two industrial pilot services

◦ Executed in a simulated context environment.

◦ Contained development of architecture models

◦ Implementation adjusted the implementation of
existing product components to support the
reconfiguration interfaces the middleware requires.

◦ Lacking good support for defining properties and
utility functions

Martin Øinæs Myrseth - Torkild Retvedt

MADAM results

 Prototype middleware

◦ 3,000 variations evaluated within one second

(iPAQ 5550).

 Two industrial pilot services

◦ Many fewer variations evaluated in the same

time-span.

◦ Less relevant variants than the number of

variants obtained by exploring the whole

variation set.

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

17

MADAM and beyond - scalability

 Scalability

◦ More extensive use of parameterization

 Effectively models and implements variability

 Can lead to larger sets of variants with only small

differences in component properties

◦ Concurrently running applications

 Competing for the same resources

 Reason over a set of concurrent applications

Martin Øinæs Myrseth - Torkild Retvedt

CARISMA vs MADAM

 Context aware

 Profiles, policies

 Conflicts and conflict

resolving

 Utility functions

◦ Customizable

 Generalization of

reification

 Transparent

 Context aware

 Component types

 No concrete conflict

resolving

 Utility functions

◦ Customizable

 Architecture runtime

models

 Transparent

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

18

Questions?

Martin Øinæs Myrseth - Torkild Retvedt

