
08.11.2007

1

Mobile middleware
CARISMA and MADAM

Torkild Retvedt – Martin Øinæs Myrseth

Mobile middleware

 Context changes are frequent

 Mobile devices have limited resources

◦ Limits complexity and overhead of context

change handling

◦ Context awareness has an impact on system

resources and service quality

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

2

CARISMA
Context-Aware Reflective mIddleware

System for Mobile Applications

Introduction to CARISMA

 Provide a context aware layer for mobile

platforms

 Handle context changes

◦ e.g. variation in bandwidth, battery, network

coverage

 Implementation is hidden from both the

user and the developer (transparent)

 Applications may have valuable

information about contexts

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

3

The Reflective Model

 Mobile devices changes context rapidly

 Provide an abstraction of the middleware

 Allow applications to dynamically inspect

and/or change middleware behavior

 Context configurations choose what

policies are applied to a service

Martin Øinæs Myrseth - Torkild Retvedt

messagingService

plainMsg

bandwidth > 40%

compressedMsg

bandwidth < 40%

Profiles

 Profiles are passed down to the middleware

 Context configurations decides what policies

to apply to a service

 Services are affected by one and only one

policy at a time

 Applications may add

associations, dynamically changing the

behavior of the middleware

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

4

Conflicts

 We divide conflicts into two main

categories

◦ Intraprofile conflicts

 Conflicts exists in a profile of an application on a

single device (local conflict)

◦ Interprofile conflicts

 Conflicts exists between profiles on an application

running on different devices (distributed among

various middleware instances)

Martin Øinæs Myrseth - Torkild Retvedt

Conference Application

 Reminder of next talk

◦ A local service

◦ Service requested when attending a talk

◦ An alert occur while user is interacting with the
device, and attending a talk

◦ Conflict! Each service is delivered using only one
policy

talkReminder

soundAlert

location = outdoor

vibraAlert

location = conferenceRoom

silentAlert

userFocus = on
Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

5

Conference Application cont.

 Exchange of messages

◦ Distributed application

◦ Alice has battery < 40% and Claire has
bandwidth > 50%

 Everyone agree

◦ Alice has battery > 40% or Claire has
bandwidth < 50%

 Interprofile conflict!

% Alice

messagingService

plainMsg

battery < 40%

compressedMsg

battery > 40%

% Claire

messagingService

plainMsg

bandwidth > 50%

compressedMsg

bandwidth < 50%

% Bob

messagingService

plainMsg

Martin Øinæs Myrseth - Torkild Retvedt

Avoiding conflicts

 Dynamicity

◦ Not possible to discover conflicts before they
happen

◦ Ignore conflicts until they are invoked

 Simplicity

◦ Cannot take up to much resources

 Customization

◦ We don’t want to ask applications for solutions
each time a conflict occur

◦ Applications must be able to favor a solution to a
conflict

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

6

Conflict resolution

 All participants must take a collective

choice to use a single policy

 Use microeconomic techniques

◦ The different policies are goods

◦ Applications are consumers

◦ A good scheme to use is the auction protocol

 Greater heterogeneity than simpler schemes

 Parties make decisions independently

◦ Middleware is the auctioneer

Martin Øinæs Myrseth - Torkild Retvedt

Conflict resolution cont.

 Computation of the solution set

◦ Peers need to agree on a common policy

◦ If no common policy is found, conflic cannot be
resolved

◦ All peers must bid in the auction

◦ The policy with the highest sum of bids wins

◦ All auctions are isolated

 Next time same conflict may have a different winning
policy

◦ Policies can be favored

 Applications can tell the middleware that it favors
specific goals within a policy

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

7

Performance
Impact of Reflection

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10 12 14 16 18 20

m
s

Number of policies
Martin Øinæs Myrseth - Torkild Retvedt

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

8

Performance
Impact of context-awareness

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

1 context, 1 resource

3 contexts, 5 resources

5 contexts, 10 resources

m
s

Number of policies

Martin Øinæs Myrseth - Torkild Retvedt

0

100

200

300

400

500

0 5 10 15 20

2 conflicting policies

5 conflicting policies

10 conflicting policies

Performance
Impact of utility function parameters

m
s

Utility function parameters

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

9

0

500

1000

1500

2000

2500

0 5 10 15 20

Without conflicts

With conflicts

Performance
Impact of conflict resolution mechanism

m
s

Number of policies

Martin Øinæs Myrseth - Torkild Retvedt

0

1000

2000

3000

4000

5000

2 3 4 5 6 7

3 policies, 2 conflicts, 1

context, 1 resource

5 policies, 3 conflicts, 3

contexts, 5 resources

Performance
Impact of conflicts in a distributed setting

m
s

Number of devices

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

10

MADAM
Mobility and ADaptation enAbling Middleware

MADAM – Goals

 Provide software engineers with suitable
means to develop mobile adaptive
applications
◦ Modelling language extensions

◦ Tools

◦ Middleware

 Basis in studies of adaptation requirements
of mobile applications

 Provide a set of reusable adaptation
strategies and adaptation mechanisms

 Use a dynamically reconfigurable component
architecture

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

11

MADAM’s main functions

 Detect context changes

◦ Changes in the operating environment

 Evaluate context changes and make a

decision on what adaptation to perform

◦ Select the best suited application variant

 Implement the adaptation choices

◦ Adapt the running application, invoke the

application variant

Martin Øinæs Myrseth - Torkild Retvedt

Variability

 MADAM uses component frameworks

◦ Composition of component types

◦ Plugging in different component implementations

 Two types of variability

◦ Compositional variability

 Coarse-grained adaptability

 Structural and algorithmic variability

◦ Parameterization

 Fine-grained adaptability

 Modify program variables and behavior

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

12

Variant properties

 Annotate components with properties

discriminate between alternative

component implementations

 Qualify the services components offer

and needs

 Components interact through ports with

attached properties

 Services needed and offered are

properties attached to ports

Martin Øinæs Myrseth - Torkild Retvedt

Component type

 Component implementations plug into a

component type

 Various component implementations

should be comparable

 Component implementations must share

a common set of properties, defined by

the component type

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

13

Variant selection – utility functions

 MADAM uses utility functions for
application variant decision making

 Utility functions assign a scalar value to
every possible application variant as a
function of application properties

 The architect specifies the utility
functions, not the user – hard task

 User has the ability to prioritize certain
needs to allow some level of user
adaptation control

Martin Øinæs Myrseth - Torkild Retvedt

MADAM’s architecture

 Runtime models

◦ At application launch time the middleware
interprets the models the architect specified to
generate the framework architecture model’s
runtime representation.

◦ All components that can plug into the
component framework are identified by the
middleware (described by compile-time models).

◦ The runtime model might be generated only at
launch time for software needing few updates.

◦ Dynamic applications must update the runtime
model while the application is running.

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

14

MADAM’s architecture

 Context manager

◦ Determines properties of interest in evaluation
variants.

◦ Assigning values to properties requires
monitoring of the context since properties relate
to context elements.

◦ Handles context reasoning:

 Aggregation

 Derivation

 Prediction

◦ Passes relevant context information to the
adaptation manager – when appropriate.

Martin Øinæs Myrseth - Torkild Retvedt

MADAM’s architecture

 Adaptation manager

◦ Evaluate the impact of changes on the

application – changes reported from the

context manager

◦ Select an application variant that best suits

the current context and user needs – Utility

functions

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

15

MADAM’s architecture

 Configurator

◦ Reconfiguring an application.

◦ Compares the application instance with new

variant models to derive the reconfiguration

steps.

◦ Might

 Bring components into safe state.

 Delete or replace component instances.

 Instantiate components.

 Transfer states.

Martin Øinæs Myrseth - Torkild Retvedt

MADAM’s architecture

 Core component
◦ Provides platform-independent services for

managing
 Applications

 Components

 Component instances

◦ Includes operations for
 Publication and discovery of component frameworks

and implementations

 Loading, unloading and connecting components

◦ Provides platform-independent access to
execution platform’s resources
 Memory etc.

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

16

MADAM in action

 Two simple case examples

◦ An information service to support janitor inspections.

◦ A video streaming application.

 Two industrial pilot services

◦ Executed in a simulated context environment.

◦ Contained development of architecture models

◦ Implementation adjusted the implementation of
existing product components to support the
reconfiguration interfaces the middleware requires.

◦ Lacking good support for defining properties and
utility functions

Martin Øinæs Myrseth - Torkild Retvedt

MADAM results

 Prototype middleware

◦ 3,000 variations evaluated within one second

(iPAQ 5550).

 Two industrial pilot services

◦ Many fewer variations evaluated in the same

time-span.

◦ Less relevant variants than the number of

variants obtained by exploring the whole

variation set.

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

17

MADAM and beyond - scalability

 Scalability

◦ More extensive use of parameterization

 Effectively models and implements variability

 Can lead to larger sets of variants with only small

differences in component properties

◦ Concurrently running applications

 Competing for the same resources

 Reason over a set of concurrent applications

Martin Øinæs Myrseth - Torkild Retvedt

CARISMA vs MADAM

 Context aware

 Profiles, policies

 Conflicts and conflict

resolving

 Utility functions

◦ Customizable

 Generalization of

reification

 Transparent

 Context aware

 Component types

 No concrete conflict

resolving

 Utility functions

◦ Customizable

 Architecture runtime

models

 Transparent

Martin Øinæs Myrseth - Torkild Retvedt

08.11.2007

18

Questions?

Martin Øinæs Myrseth - Torkild Retvedt

