

Microsoft .NET

 Group 4
 Geir Arveschoug Erikstad
 Tommy Gudmundsen
 Christian Mikalsen

 Agenda
 Introduction to the .NET framework
 Introduction to COM and COM+
 .NET remoting

.NET Framework

 The common language runtime
 Class libraries

Common Language Infrastructure

 Open standard from Microsoft
 Describes the executable code and runtime

environment that form the core of the
Microsoft .NET Framework

Common Language Runtime

 Microsofts implementation of CLI
 Code that targets the runtime is called

managed code
 Features cross-language integration, cross-

language exception handling, enhanced
security, versioning and deployment support, a
simplified model for component interaction, and
debugging and profiling services

Common Type System

 Enable cross-language integration, type safety,
and high performance code execution

 Object-oriented model that supports the
complete implementation of many programming
languages

 Defines rules that languages must follow, which
helps ensure that objects written in different
languages can interact with each other

Common Language Specification

 Set of basic language features needed by many
applications

 Subset of the common type system
 If you only use CLS features in the API that it

exposes to other code -> component is
guaranteed to be accessible from any
programming language that supports the CLS

Managed code and data

 Managed code
 Targets the services of the

common language runtime
 C#, VB.net, JScript.net is

managed by default
 Visual Studio .NET C++

is not managed by default

 Managed data
 Allocated and de-allocated by the

CLR's garbage collector
 C#, VB.net, JScript.net by default, can turn of in C#
 C++ not by default, but possible with Managed Extensions

© 2007 Microsoft Corporation

Assembly

 Primary building block of a .NET Framework
application

 A collection of functionality that is built,
versioned, and deployed as a single
implementation unit (as one or more files)

 Self-describing by means of their manifest

From high level code to native code

 Compiled to an assembly
 CLR uses a JIT-compiler

to make native code
 Must pass verification

.NET components

 Special type of executable built from a .NET
project

 .NET components provide a programmable
interface that is accessed by consumer (client)
applications

 Built and tested as independent .NET projects
 Can be added to many .NET applications as

plug-in service providers

Introduction to COM and COM+

 COM was introduced by Microsoft in 1993
 Originated from DDE and OLE

 Object Architecture: Dealing with the Unknown or Type
Safety in a Dynamically Extensible Class (1988)

 On Inheritance: What It Means and How To Use it (1990)

 A language-neutral way of implementing
objects such that they can be used in
environments different from the one they were
created in, also across machine boundaries.

COM+

 Extension of the original COM
 Originated with DCOM

 Goal of DCOM is to provide support for components
distributed on different machines.

 Offers a framework of distributed functionality
 Makes COM easier to use
 Distributed transactions
 Resource pooling
 Thread management

 COM/COM+ are used interchangeably

Classes and interfaces in COM

 Interfaces
 Interfaces play a vital role in COM (point of contact)
 Interfaces are identified by a IID/GUID.
 COM defines a binary standard for interfaces.

 CoClasses
 A CoClass contains a concrete implementation of

one or more interfaces, and is identified by a
CLSID.

 All CoClasses are required to implement IUnknown,
which contains the functions AddRef, Release and
QueryInterface.

Classes and interfaces in COM

Stereo class

IUnknown

IRadio

ICDPlayer

Interfaces retrieved using QueryInterface

IUnknown

 AddRef and Release
 Used to keep reference count of components.

 QueryInterface
 Can be called to check if a component implements

a specific interface (IID). If the interface is
supported, an interface pointer is returned.

 Used to provide casting between the different
interfaces of a component.

COM servers

 A COM server contains one or more
CoClasses, and is either a DLL or executable.

 COM servers need to be registered in Windows
before they can be used, which typically adds
an entry to the Windows registry.

Interface Definition Language

 Interfaces, classes and types are specified in
an Interface Defintion Language (IDL).

 The IDL can be compiled into header files
and/or proxy objects in different languages.

 IDL can also be compiled into type library (TLB)
files, which can be imported into many popular
IDEs.

Object in activation in COM

 Clients call CoCreateInstance
 Wanted CLSID and IID is specified as parameters.
 A Service Control Manager performs a lookup in the

COM database and instantiates a server process.
 The function returns an interface pointer to the

requested interface of the newly created CoClass.
 Typically, class factories are used to create

instances. Class factories are themselves
CoClasses implementing IClassFactory.

Method invocations in COM

 In-process server:
A client talks directly to the library containing the server.

 Local Object Proxy:
A client talks to a server running in a different process (on
the same machine) through interprocess-communication.
This is similar to a lightweight Remote Procedure Call.

 Remote Object Proxy:
A client talks to a server running on another machine.
Communication is handled through RPC, previously
distinguished by the name DCOM.

In-process server

Client application Object

Interface pointer

vtable
Function pointer table

Remote object proxy

Client process

COM

Object proxy

Remote process

COM

Stub

Channel
Remote Procedure Call (RPC)

Marshalling

Interface pointer

.NET Remoting

 What is .NET Remoting?
 A framework for building distributed applications

and systems.
 It supports collaboration among objects in different

application domains.
 It hides much of the complexity of calling methods

on remote objects.

Application Domains

 The .NET boundary for Interprocess Communication.

 A more granular level of separation and better security
than traditional processes.

Contexts

 A boundary that contains objects with similar runtime
properties.

 Several contexts may exist within one application
domain, but then
proxies do the
marshaling locally.

Channels

 Transports messages between application domains.

 Registered by, and shared among objects.

 The formatter serializes the message.

Remote Objects 1

 Any object outside the application domain should be
considered remote, even if the objects are executing
on the same machine.

 Marshaling (packaging):

 Marshal by value - objects must be serializable.
 Marshal by reference.

 The MarshalByRefObject class – base class for
remote objects.

 The ObjRef class – A remote object reference.

Remote Objects 2

 Three types of remote objects:
 Single call

 Singleton

 Client-activated

Object Activation

 Two kinds of object activation:
 Server-activated objects.
 Client-activated objects.

Activation – Server-activated

 No calls are made to the remote object when the client
activates a new object. TransparentProxy is created.

 The remote object is activated when the first method
call is performed.

 Applies to:

 Single call

 Singleton

Activation – Client-activated 1

 Remote object activated upon creation.

 Remote call is made through an ActivationProxy.

 Supports constructor parameters.

 Applies to:

 Client-activated.

Activation – Client-activated 2

 When unmarshaling the ObjRef returned, the
RealProxy and TransparentProxy objects are created.

Lifetime management

 Remote object lifetime management is based on a
lease system.

 Every application domain have a lease manager.

Questions?

