
INF5040 H2007 1

INF5040 Frank Eliassen 1

Distributed objects and

object-based middleware

INF 5040 autumn 2007

lecturer: Frank Eliassen

INF5040 Frank Eliassen 2

Why objekt-based distribution
middleware?

� Encapsulation
� natural unit of development of distributed applications

� Data abstraction
� separation between implementation (class) and specification (interface)

� Incremental development
� an object can be replaced by an alternative implementation

� Extensibility
� can add new classes and objects

� Inheritance of implementations and interfaces
� supports reuse of code and interface

� Subtyping
� enables flexible selection of services in a distributed environment

INF5040 H2007 2

INF5040 Frank Eliassen 3

Distributed objects - I

�Objects in a distributed program executes in
different processes.
� each object has a remote interface for controlling

access to its methods and attributes that can be
accessed from other objects in other processes
located on the same or other machines

– declared via an “Interface Definition Language” (IDL)

� remote object
– object that implements a remote interface

� Remote Method Invocation (RMI)
– method call from an object in one process to a remote

object in another process

INF5040 Frank Eliassen 4

Distributed objects - II

� Remote objects have a unique identity: Remote Object
Reference (ROR)

� Other objects that want to invoke methods of a remote
object needs access to its ROR

� RORs are “first class values”
� can occur as arguments and results in RMI
� can be assigned to variables

� Remote objects are encapsulated by an interface
� Remote objects have a set of named attributes that can

be assigned values
� Remote objects can raise “exceptions” as a result of

method invocations

INF5040 H2007 3

INF5040 Frank Eliassen 5

The type of a distributed

object

�Attributes, methods and exceptions are
properties objects can export to other objects

�These properties determine the type of an
object

� Several objects can export the same properties
(same type of objects)

�The type is defined once

�The object type is defined by the interface
specification of the object

INF5040 Frank Eliassen 6

Exceptions

�Remote method invocations in a distributed
systems can fail

� Exceptions are used to explain the cause of the
failure to the method caller

� Failure of remote method invocations can be
� generic

� specific (application specific)

� Specific failure can be declared in object type
specific exceptions

INF5040 H2007 4

INF5040 Frank Eliassen 7

Declaration of remote methods

�A remote method is declared by its signature
that consists of

� a name

� a list of in, out, and inout parameters

� a return value type

� a list of exceptions that the metod can raise

INF5040 Frank Eliassen 8

Example: CORBA/IDL

typedef enum {

Goalkeeper, Defender, Midfielder, Attacker

} Position

interface Player {

readonly string Firstname;

readonly string Surname;

readonly short Age;

Position Role;

Exception AlreadySelected{ };

void select (in Date d) raises (AlreadySelected);

};

INF5040 H2007 5

INF5040 Frank Eliassen 9

Remote method invocations

�A client object can request the execution of a
method at a remote object

�Remote methods are invoked by sending a
message (incl method name and arguments) to
the remote object

�The remote object is identified by an object
reference (Remote Object Reference - ROR)

�Clients must be able to handle exceptions that
the method can raise

INF5040 Frank Eliassen 10

data

impl. of

methods

Fjernobjekt med

fjerngrensesnitt

m4
m5
m6

local

interface

remote

interface

m1
m2
m3

INF5040 H2007 6

INF5040 Frank Eliassen 11

Subtyping of distributed

objects

� object types are organised into a type hierarchy

� subtypes inherit attributes, exceptions, and methods
from their supertypes

interface Club {

readonly string name;

readonly string streetaddr;

. . .

};

interface FootballClub : Club {

. . .

};

interface HandballClub : Club {

. . .

};

INF5040 Frank Eliassen 12

Language heterogeneity

�Some object-based middlewares allow
interacting objects to be implemented in
different programming languages

�Based on a common object model
provided by the middleware

�Need for advanced mappings between
different object implementation languages
and the common object model

INF5040 H2007 7

INF5040 Frank Eliassen 13

Purpose of

common object model

� Metalevel model for the type system of the
middleware

� Defines the meaning of e.g.,
� object identity
� object type (interface)
� operation (method)
� attribute
� method invocation
� exception
� subtyping/inhertance

� Must be defined generally enough to be mappable
to most programming languages

INF5040 Frank Eliassen 14

Interface Definition

Language (IDL)

� Language for expressing all concepts in the object
model of the middleware platform

� Requirement

� must be independent of a specific programming language

� need not be computationally complete

� Need for bindings (or language mappings) to
different programming languages

� Example:

� CORBA object model and different language bindings for
CORBA/IDL

INF5040 H2007 8

INF5040 Frank Eliassen 15

Common object model

Common

object

model

IDL

C++

C

Cobol

Java

Ada-95

Smalltalk

INF5040 Frank Eliassen 16

Summary

� Distributed objects executes in different processes.

� remote interfaces allow an object in one process to invoke
methods of objects in other processes located on the same or on
other machines

� Object-based distribution middleware:

� midleware that models a distributed application as a collection of
interacting distributed objects (e.g., CORBA, Java RMI)

� some middlewares (as CORBA) allow objects in the same
application to be implemented in different programming
languages

