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Why objekt-based distribution
middleware?

� Encapsulation
� natural unit of development of distributed applications

� Data abstraction
� separation between implementation (class) and specification (interface)

� Incremental development
� an object can be replaced by an alternative implementation 

� Extensibility
� can add new classes and objects

� Inheritance of implementations and interfaces
� supports reuse of code and interface

� Subtyping
� enables flexible selection of services in a distributed environment
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Distributed objects - I

�Objects in a distributed program executes in 
different processes. 
� each object has a remote interface for controlling 

access to its methods and attributes that can be 
accessed from other objects in other processes 
located on the same or other machines

– declared via an “Interface Definition Language” (IDL)

� remote object
– object that implements a remote interface 

� Remote Method Invocation (RMI) 
– method call from an object in one process to a remote 

object in another process
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Distributed objects - II

� Remote objects have a unique identity: Remote Object 
Reference (ROR)

� Other objects that want to invoke methods of a remote 
object needs access to its ROR

� RORs are  “first class values”
� can occur as arguments and results in RMI
� can be assigned to variables

� Remote objects are encapsulated by an interface 
� Remote objects have a set of named attributes that can 

be assigned values
� Remote objects can raise “exceptions” as a result of 

method invocations 
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The type of a distributed 

object

�Attributes, methods and exceptions are 
properties objects can export to other objects

�These properties determine the type of an 
object

� Several objects can export the same properties 
(same type of objects)

�The type is defined once

�The object type is defined by the interface 
specification of the object 
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Exceptions

�Remote method invocations in a distributed 
systems can fail

� Exceptions are used to explain the cause of the 
failure to the method caller

� Failure of remote method invocations can be
� generic

� specific (application specific)

� Specific failure can be declared in object type 
specific exceptions
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Declaration of remote methods

�A remote method is declared by its signature 
that consists of

� a name

� a list of in, out, and inout parameters

� a return value type

� a list of exceptions that the metod can raise
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Example: CORBA/IDL

typedef enum {

Goalkeeper, Defender, Midfielder, Attacker

} Position

interface Player {

readonly string Firstname;

readonly string Surname;

readonly short Age;

Position Role;

Exception AlreadySelected{ };

void select (in Date d) raises (AlreadySelected);

};
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Remote method invocations

�A client object can request the execution of a 
method at a remote object 

�Remote methods are invoked by sending a 
message (incl method name and arguments) to 
the remote object

�The remote object is identified by an object 
reference (Remote Object Reference - ROR)

�Clients must be able to handle exceptions that 
the method can raise
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Subtyping of distributed 

objects

� object types are organised into a type hierarchy

� subtypes inherit attributes, exceptions, and methods 
from their supertypes

interface Club {

readonly string name;

readonly string streetaddr;

. . .

};

interface FootballClub : Club {

. . .

};

interface HandballClub : Club {

. . .

};
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Language heterogeneity

�Some object-based middlewares allow 
interacting objects to be implemented in 
different programming languages

�Based on a common object model 
provided by the middleware

�Need for advanced mappings between 
different object implementation languages 
and the common object model
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Purpose of 

common object model

� Metalevel model for the type system of the 
middleware 

� Defines the meaning of e.g., 
� object identity
� object type (interface)
� operation (method)
� attribute
� method invocation
� exception
� subtyping/inhertance

� Must be defined generally enough to be mappable
to most programming languages
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Interface Definition 

Language (IDL)

� Language for expressing all concepts in the object 
model of the middleware platform

� Requirement

� must be independent of a specific programming language

� need not be computationally complete

� Need for bindings (or language mappings) to 
different programming languages

� Example: 

� CORBA object model and different language bindings for 
CORBA/IDL
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Common object model

Common

object

model

IDL

C++

C

Cobol

Java

Ada-95

Smalltalk
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Summary

� Distributed objects executes in different processes. 

� remote interfaces allow an object in one process to invoke 
methods of objects in other processes located on the same or on 
other machines

� Object-based distribution middleware:

� midleware that models a distributed application as a collection of 
interacting distributed objects (e.g., CORBA, Java RMI)

� some middlewares (as CORBA) allow objects in the same 
application to be implemented in different programming 
languages


