
INF 5040 høst 2005 1

INF5040, Roman Vitenberg 1

Time and Coordination

INF 5040 autumn 2007

lecturer: Roman Vitenberg

INF5040, Roman Vitenberg 2

Time in Distributed Systems

�Uses of time
� Real-time synchronization

� Relative order of events
– The only way to infer in an asynchronous system is through
causality

� Logical time
� Attempts to capture dependencies due to message
exchange and local process ordering
– Possible false positives

– Does not capture dependencies that are due to a cause
other than message exchange

INF 5040 høst 2005 2

INF5040, Roman Vitenberg 3

“Happened-before” relation

�Notation
� x →p y: x happened before y at process p
� x → y: x happened before y

�Condition 1
� If ∃ process p : x →p y, then x → y

�Condition 2
� For each process m : send(m)→ rcv(m)

�Condition 3
� If x, y, and z are events such that x → y and
y → z, then x → z

INF5040, Roman Vitenberg 4

“Happened-before” illustrated

� Events that are not related by the “happened-before”
relation are called concurrent: a || e

p2

p1

p3

a

f

b

e

dc

m1

m2

INF 5040 høst 2005 3

INF5040, Roman Vitenberg 5

Logical clock

� Each process p maintains its own logical clock Cp
� Monotonically increasing counter

� Used to timestamp events

� Cp(a) : the timestamp of event a at process p

� Rules for logical clock
� LC1:

– C
p
is incremented by 1 before each event is issued at process p

� LC2:
– When a process p sends a message m, it piggybacks C

p
on m

– When (m,t) is received by q, q computes C
q
:=max(C

q
,t)and

applies LC1 before timestamping the event rcv(m).

INF5040, Roman Vitenberg 6

Example for Logical Clocks

p2

p1

p3

a

f

b

e

dc

m1

m2

1

1 2

3 4

5

x → y ⇒ C(x) < C(y) (not equivalent!!)

INF 5040 høst 2005 4

INF5040, Roman Vitenberg 7

Vector clocks

� Each process p maintains its vector clock Vp of
size N

�Vp(a) : the timestamp of event a at process p

�Rules for vector clock
� VC1: Vp [j] is initially 0 for all j

� VC2:
– p sets Vp[p]:=Vp[p]+1 before timestamping each event

� VC3:
– When p sends a message m, it piggybacks Vp on m

� VC4: When (m,t) is received by q, q computes
Vq[j]:=max(Vq[j],t[j])for all j

INF5040, Roman Vitenberg 8

Example for Vector Clocks

p2

p1

p3

a

f

b

e

dc

m1

m2

(0,0,1)

(1,0,0) (2,0,0)

(2,1,0) (2,2,0)

(2,2,2)

x → y ⇔ V(x) < V(y) (equivalent)

INF 5040 høst 2005 5

INF5040, Roman Vitenberg 9

Local events and states

L,,,, 3322110

iiiiiiii sesesesh ↔↔↔=

The history (h) of a process is modelled as a

sequence of events and corresponding states:

Sometimes we are only interested in the events:

L,,, 321

iiii eeeh =

Sometimes it is assumed that sending a message

does not alter the local state

INF5040, Roman Vitenberg 10

�Cut: union of prefixes of process histories

� May be consistent or not

Global histories and cuts

p2

p1

p3

a

f

b

e

dc

m1

m2

INF 5040 høst 2005 6

INF5040, Roman Vitenberg 11

Consistent cuts

We are only interested in consistent cuts!

Cut C is consistent if

CfefCe ∈⇒→∧∈)(

INF5040, Roman Vitenberg 12

Global state

P1 P2 P3 ……… Pn

…… ……… ……… ………

0

1s

1

1s

3

1s

2

1s

0

2s

1

2s

3

2s

2

2s

0

3s

1

3s

3

3s

2

3s

0

ns

1

ns

3

1s

2

ns
…consistent states

correspond to

consistent cuts...

If local states do not

include message

sends, we

additionally need to

capture messages

in transition

INF 5040 høst 2005 7

INF5040, Roman Vitenberg 13

Linearization and properties

� Linearization is a full ordering of all events in a
global history that preserves →

� State S’ is reachable from state S if there is a
linearization that starts in S and ends in S’

� Property: a global state predicate
� Stable property: if true in S, true in every state
reachable from S

� Safety property: true in every state reachable from S0
� Liveness property: in every linearization, there is a
state reachable from S0 in which it is true

INF5040, Roman Vitenberg 14

Total ordering of events

� Logical clocks give a partial ordering
� Events issued by different processes may have
identical timestamps

� Extension to total ordering
� Each process has a unique identifier
� Process identifiers are totally ordered

�Global timestamp
� a is an event at pa with local timestamp Ta
� Global logical timestamp for a are (Ta, pa)

�(Ta,pa)<(Tb,pb)if Ta<Tb, or Ta=Tb and pa<pb

INF 5040 høst 2005 8

INF5040, Roman Vitenberg 15

The snapshot problem

� Finds a consistent global state that may have occurred

S1 Snapshot starts

S2

The state represented by the snapshot

S3Snapshot ends

What actually occurs: e1, e2, …

INF5040, Roman Vitenberg 16

Assumptions for the snapshot

algorithm

�No process or network link fails

�Network links preserve FIFO

�Full network: each pair of processes
connected by two network links, one in
each direction

INF 5040 høst 2005 9

INF5040, Roman Vitenberg 17

Responsibility of the

processes

� Every process can initiate a snapshot
� A process takes initiative to log its own state and
sends a marker message on all output channels.

� Each process has responsibility for
� Logging its own state,

� Logging the incoming messages on input channels,

� Sending or forwarding the marker.

�Upon termination, the collection of local states
of processes and recorded states of channels
should give us a consistent global state

INF5040, Roman Vitenberg 18

The first attempt

P sends a marker over all outgoing links…

P waits until it receives a marker on all input channels

P logs its own state

When another process Q receives a marker

Q logs its own state

Q sends the marker back to P…

INF 5040 høst 2005 10

INF5040, Roman Vitenberg 19

Is the protocol correct?

�The captured state may be inconsistent

�It does not capture messages in transit

p2

p1

p3

marker

m

marker

INF5040, Roman Vitenberg 20

Correct snapshot protocol

�[Chandy,Lamport 1985]

�The procedure to start the snapshot

P logs its own state.

P sends a marker over all outgoing links.

P starts to log imcoming messages on all

input channels

INF 5040 høst 2005 11

INF5040, Roman Vitenberg 21

The procedure upon

marker reception

When P receives a marker over channel c

IF P has not recorded its state

P records its state.

P forwards the marker over all output channels

P initialize the state of c to the empty set

P starts to record incoming messages

on all other input channels

ELSE

P records the state of c:

all the messages that have been

received on c since P recorded

its own state, which are said to be

in transition over the channel

END

INF5040, Roman Vitenberg 22

Proof of protocol correctness

�The recorded state is consistent.

� If x → y, and y occurred at p before p

recorded its state, then x must have been

received at q before q recorded its state.

�State S2 must be reachable from S1.

�State S3 must be reachable from S2.

�

INF 5040 høst 2005 12

INF5040, Roman Vitenberg 23

Distributed consensus

�N processes out of which at most f can be faulty
�Two possible input values, 0 or 1
�Agreement (also called correctness)

� No two non-faulty processes decide on different values

�Termination
� If there are non-faulty processes, at least one of them
decides

� Integrity (or validity or non-triviality)
� if all non-faulty processes start with the same initial
value v, then v is the only possible decision value for a
non-faulty process

INF5040, Roman Vitenberg 24

Other agreement problems

�Reliable multicast (also called terminating
reliable broadcast)

�Group membership

� Leader election

�Distributed locking

�Mutual exclusion

�Atomic transactions

�Resource allocation

INF 5040 høst 2005 13

INF5040, Roman Vitenberg 25

Reliable broadcast

�One sender that sends a single message

�Termination: Every non-faulty process
delivers a message (possibly ⊥)

�Agreement: No two non-faulty processes
deliver different messages

�Validity: no spurious messages

�Integrity: If the sender is non-faulty, it
delivers the message it sent

INF5040, Roman Vitenberg 26

Group membership

�Each process starts with a list of
processes it considers correct

�Agreement on the list of participating
processes

�Validity 1: If a process is in all input lists,
then it will be in the decided list

�Validity 2: If a process is in no input list,
then it will not be in the decided list

INF 5040 høst 2005 14

INF5040, Roman Vitenberg 27

Known impossibility results

� Impossible to solve if faulty processes are
malicious and N ≤ 3f

� Can be alleviated by using digital signatures

� Impossible to solve in asynchronous systems

� Can be circumvented by masking faults

� Or by designating the process that adds to
asynchrony as faulty

� Or by using randomization

INF5040, Roman Vitenberg 28

Mutual exclusion problem

� Safety:

� At most one process can be in a critical section at a time

� Liveness:

� Each request to enter or exit the critical section eventually
succeeds (as long as the process that executes in the critical
section eventually requests to leave it)

� Ordering:

� Entrance to the CS must observe the “happened-before” relation

p2

p1 b

c

m1

Request to
enter CR Request to enter CR

INF 5040 høst 2005 15

INF5040, Roman Vitenberg 29

p1
p2

p3

p4

4

Central server algorithm

� Central server that grants entrance to the critical section

� protocol
� enter() -- enter critical section - blocks if necessary

exit() -- leaves critical section - other processes can now enter

2

Queue of requests

has token

Release
token

Request
token

Grant token

INF5040, Roman Vitenberg 30

Evaluation of the
central server algorithm

� Are safety and liveness satisfied?

� Is ordering satisfied?

� How to ensure it?

� Shortcomings of the algorithm

� Performance bottleneck

� The server can fail
� We can make one of the clients a new server

� Requires distributed election

� How to ensure that the old order preceding the failure is preserved?

� Client with the token may fail

� How to ensure that the token becomes accessible again?

INF 5040 høst 2005 16

INF5040, Roman Vitenberg 31

Ring-based algorithm

�A token rotating in one direction

�A process can enter the critical section
when it has the token

�When a process that has not requested to
enter receives a token, it passes the token
on

INF5040, Roman Vitenberg 32

Evaluation of the ring-

based algorithm

� Fault-tolerance

� Problematic when a node crashes

– Mend the ring

– Ensure that the ring contains exactly one token

�No central bottleneck

� Redundant messages are sent if no process attempts
to enter the critical section

� Safety and liveness are trivially satisfied, but
ordering requires an additional mechanism

INF 5040 høst 2005 17

INF5040, Roman Vitenberg 33

Distributed algorithm based

on logical clocks

� Basic idea [Ricart & Agrawala, 1981]:

� A process that wishes to enter a critical section, multicasts a
message to all the processes

� A process can enter a CS when it gets acks from all the processes

� Rules wrt when to send an ack in order to ensure fulfillment of the
requirements

� Assumptions

� Processes know each other addresses

� Every sent message will eventually be delivered

� Each process maintains a logical clock

� Timestamps include processId: <T,p> (i.e., total ordering)

� Each process maintains its state wrt token pocession

– RELEASED, WANTED, HELD

INF5040, Roman Vitenberg 34

Ricart & Agrawala algorithm

Upon initialization

state := RELEASED;

To enter the critical section

state:= WANTED;

Multicast a request to all the processes

T := the current timestamp;

wait until ((n-1) acks are received);

state := HELD;
Upon receiving a request with <T

i
,p

i
> at p

j
(i ≠ j)

if (state=HELD or (state=WANTED and (T,pj) < (Ti,pi)))
queue the request from p

i
without replying

else

send an ack to p
i

end if

Upon exiting from the critical section

state := RELEASED

reply to all queued messages

INF 5040 høst 2005 18

INF5040, Roman Vitenberg 35

Evaluating of the
Ricart & Agrawala algorithm

� Are safety and liveness satisfied?

� Is ordering satisfied?

� Shortcomings

� Many messages are sent in order to enter critical section

� 2(n-1) messages without HW support for multicast

� n messages with HW support for multicast

� Not resilient to process crashes

INF5040, Roman Vitenberg 36

Summary of distributed
mutual exclusion algorithms

� Little resilience to failures

� Can be improved by additional mechanisms

� But it will never be perfect in an asynchronous system

� Central server requires the lowest number of messages
but can become a bottleneck

INF 5040 høst 2005 19

INF5040, Roman Vitenberg 37

Requirements for

distributed leader election

� In many distributed algorithms, one of the participating
processes will play the role of a central coordinator
� Central server in the mutual exclusion algorithms

� Coordinator of a distributed transaction

� If a coordinator fails, one of the remaining processes can
be elected to take over the central role
� Provide better fault-tolerance

� The main requirement
� Only one leader may exist at a time

INF5040, Roman Vitenberg 38

The “Bully” algorithm

� [Silberschatz et al, 1993]

� Prerequisites

� The processes know each other identities and addresses

� Process identifiers are totally ordered

� The algorithm selects the process with the biggest identifier

� Message types
� election: announces an election

� answer: is sent as a reply to the election message

� coordinator: announces the identity of the new coordinator

INF 5040 høst 2005 20

INF5040, Roman Vitenberg 39

The “Bully” algorithm II

� Election procedure

� The process (that detects that the coordinator has failed)
sends the election message to the processes that have a

bigger identifier

� It then waits for the answer message a limited amount of

time

� If no answer message is received, the process considers itself
as a new coordinator and sends a coordinator message to

all the processes with smaller identifiers

� If an answer message is received, the process wait a limited
time for a coordinator message. If none arrives, it starts a

new election.

INF5040, Roman Vitenberg 40

The “Bully” algorithm III

� Election procedure (continued)

� If a process receives a coordinator message, it memorizes

the identifier included in the message and considers the
process as the new coordinator

� If a process receives an election message, it sends back an
answer message and starts a new election - unless the

process has already started one

� When a process recovers or joins the system, it starts a new
election. If it has the biggest identifier, it makes itself a
coordinator and announces it, even if there is another
functioning coordinator

INF 5040 høst 2005 21

INF5040, Roman Vitenberg 41

Illustration for the
“bully” algorithm

election

election

answer

answer

p1 p2 p3 p4Phase 1

C

p1 p2 p3 p4Phase 3

C

p1 p2 p3 p4Phase 2

C

C

timeout

answer

election

election

election

p1 p2 p3 p4Phase 4

After a while ……

coordinator

INF5040, Roman Vitenberg 42

Evaluation of the
“bully” algorithm

� Best case: n-2 coordinator messages

� Occurs when the process with the second highest id detects that
the coordinator has failed

� Worst case: O(n2) messages

� Occurs when the process with the lowest id detects that the
coordinator has failed

� => (n-1) processes start an election

� Ring-based algorithm is more efficient wrt the number of
messages

INF 5040 høst 2005 22

INF5040, Roman Vitenberg 43

The ring-based algorithm

5

16

12

6

21

3

<El. 5>

<El. 16> <El. 16>

<El. 21>

<El. 21><El. 21>

<El. 21>

<El. 21> <El. 21>

When a message has made a

full circle without changing

the id, the process will know

that it has the highest
number

Then it must inform all other
processes that it is the leader

<C. 21>

<C. 21><C. 21>

<C. 21>

<C. 21> <C. 21>

…it is possible to handle

multiple elections that have
been started concurrently

