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Time in Distributed Systems

�Uses of time
� Real-time synchronization

� Relative order of events
– The only way to infer in an asynchronous system is through 
causality

� Logical time
� Attempts to capture dependencies due to message 
exchange and local process ordering
– Possible false positives

– Does not capture dependencies that are due to a cause 
other than message exchange
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“Happened-before” relation

�Notation
� x →p y: x happened before y at process p
� x → y: x happened before y

�Condition 1
� If ∃ process p : x →p y, then x → y

�Condition 2
� For each process m : send(m)→ rcv(m)

�Condition 3
� If x, y, and z are events such that  x → y and      
y → z, then  x → z
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“Happened-before” illustrated

� Events that are not related by the “happened-before”
relation are called concurrent: a || e
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Logical clock

� Each process p maintains its own logical clock Cp
� Monotonically increasing counter 

� Used to timestamp events

� Cp(a) : the timestamp of event a at process p

� Rules for logical clock
� LC1:

– C
p
is incremented by 1 before each event is issued at process p

� LC2:
– When a process p sends a message m, it piggybacks C

p
on m

– When (m,t) is received by q, q computes C
q
:=max(C

q
,t)and

applies LC1 before timestamping the event rcv(m).
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Example for Logical Clocks
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x → y ⇒ C(x) < C(y) (not equivalent!!) 
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Vector clocks

� Each process p maintains its vector clock Vp of 
size N

�Vp(a) : the timestamp of event a at process p

�Rules for vector clock
� VC1: Vp [j] is initially 0 for all j

� VC2: 
– p sets Vp[p]:=Vp[p]+1 before timestamping each event

� VC3: 
– When p sends a message m, it piggybacks Vp on m

� VC4: When (m,t) is received by q, q computes 
Vq[j]:=max(Vq[j],t[j])for all j
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Example for Vector Clocks
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x → y ⇔ V(x) < V(y) (equivalent) 
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Local events and states

L,,,, 3322110

iiiiiiii sesesesh ↔↔↔=

The history (h) of a process is modelled as a 

sequence of events and corresponding states:

Sometimes we are only interested in the events:

L,,, 321

iiii eeeh =

Sometimes it is assumed that sending a message

does not alter the local state
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�Cut: union of prefixes of process histories

� May be consistent or not

Global histories and cuts
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Consistent cuts

We are only interested in consistent cuts!

Cut C is consistent if

CfefCe ∈⇒→∧∈ )(
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Global state
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include message
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Linearization and properties

� Linearization is a full ordering of all events in a 
global history that preserves →

� State S’ is reachable from state S if there is a 
linearization that starts in S and ends in S’

� Property: a global state predicate
� Stable property: if true in S, true in every state 
reachable from S

� Safety property: true in every state reachable from S0
� Liveness property: in every linearization, there is a 
state reachable from S0 in which it is true
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Total ordering of events

� Logical clocks give a partial ordering
� Events issued by different processes may have 
identical timestamps

� Extension to total ordering
� Each process has a unique identifier
� Process identifiers are totally ordered

�Global timestamp
� a is an event at pa with local timestamp Ta
� Global logical timestamp for a are (Ta, pa)

�(Ta,pa)<(Tb,pb)if Ta<Tb, or Ta=Tb and pa<pb
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The snapshot problem

� Finds a consistent global state that may have occurred

S1 Snapshot starts

S2

The state represented by the snapshot

S3Snapshot ends

What actually occurs: e1, e2, …
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Assumptions for the snapshot 

algorithm

�No process or network link fails

�Network links preserve FIFO

�Full network: each pair of processes
connected by two network links, one in 
each direction
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Responsibility of the

processes

� Every process can initiate a snapshot
� A process takes initiative to log its own state and 
sends a marker message on all output channels.

� Each process has responsibility for 
� Logging its own state,

� Logging the incoming messages on input channels,

� Sending or forwarding the marker.

�Upon termination, the collection of local states
of processes and recorded states of channels
should give us a consistent global state
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The first attempt

P sends a marker over all outgoing links…

P waits until it receives a marker on all input channels

P logs its own state

When another process Q receives a marker

Q logs its own state

Q sends the marker back to P…
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Is the protocol correct?

�The captured state may be inconsistent

�It does not capture messages in transit
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Correct snapshot protocol

�[Chandy,Lamport 1985]

�The procedure to start the snapshot

P logs its own state.

P sends a marker over all outgoing links.

P starts to log imcoming messages on all

input channels
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The procedure upon

marker reception

When P receives a marker over channel c

IF P has not recorded its state

P records its state.

P forwards the marker over all output channels

P initialize the state of c to the empty set

P starts to record incoming messages

on all other input channels

ELSE

P records the state of c:

all the messages that have been

received on c since P recorded

its own state, which are said to be

in transition over the channel

END
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Proof of protocol correctness

�The recorded state is consistent.

� If x → y, and y occurred at p before p

recorded its state, then x must have been 

received at q before q recorded its state.

�State S2 must be reachable from S1.

�State S3 must be reachable from S2.

�
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Distributed consensus

�N processes out of which at most f can be faulty
�Two possible input values, 0 or 1 
�Agreement (also called correctness)

� No two non-faulty processes decide on different values

�Termination 
� If there are non-faulty processes, at least one of them 
decides

� Integrity (or validity or non-triviality)
� if all non-faulty processes start with the same initial 
value v, then v is the only possible decision value for a 
non-faulty process

INF5040, Roman Vitenberg 24

Other agreement problems

�Reliable multicast (also called terminating 
reliable broadcast)

�Group membership

� Leader election

�Distributed locking

�Mutual exclusion

�Atomic transactions

�Resource allocation
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Reliable broadcast

�One sender that sends a single message

�Termination: Every non-faulty process 
delivers a message (possibly ⊥)

�Agreement: No two non-faulty processes 
deliver different messages

�Validity: no spurious messages

�Integrity: If the sender is non-faulty, it 
delivers the message it sent
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Group membership

�Each process starts with a list of 
processes it considers correct

�Agreement on the list of participating 
processes

�Validity 1: If a process is in all input lists, 
then it will be in the decided list

�Validity 2: If a process is in no input list, 
then it will not be in the decided list
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Known impossibility results

� Impossible to solve if faulty processes are 
malicious and N ≤ 3f

� Can be alleviated by using digital signatures

� Impossible to solve in asynchronous systems

� Can be circumvented by masking faults

� Or by designating the process that adds to 
asynchrony as faulty

� Or by using randomization
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Mutual exclusion problem

� Safety:

� At most one process can be in a critical section at a time

� Liveness:

� Each request to enter or exit the critical section eventually 
succeeds (as long as the process that executes in the critical 
section eventually requests to leave it)

� Ordering:

� Entrance to the CS must observe the “happened-before” relation

p2

p1 b

c

m1

Request to 
enter CR Request to enter CR



INF 5040 høst 2005 15

INF5040, Roman Vitenberg 29

p1
p2

p3

p4

4

Central server algorithm

� Central server that grants entrance to the critical section

� protocol
� enter() -- enter critical section - blocks if necessary

exit() -- leaves critical section - other processes can now enter

2

Queue of requests

has token

Release
token

Request
token

Grant token
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Evaluation of the 
central server algorithm

� Are safety and liveness satisfied?

� Is ordering satisfied?

� How to ensure it?

� Shortcomings of the algorithm

� Performance bottleneck

� The server can fail
� We can make one of the clients a new server

� Requires distributed election

� How to ensure that the old order preceding the failure is preserved?

� Client with the token may fail

� How to ensure that the token becomes accessible again?
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Ring-based algorithm

�A token rotating in one direction

�A process can enter the critical section
when it has the token

�When a process that has not requested to 
enter receives a token, it passes the token 
on
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Evaluation of the ring-

based algorithm

� Fault-tolerance

� Problematic when a node crashes

– Mend the ring

– Ensure that the ring contains exactly one token

�No central bottleneck

� Redundant messages are sent if no process attempts
to enter the critical section

� Safety and liveness are trivially satisfied, but
ordering requires an additional mechanism
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Distributed algorithm based 

on logical clocks 

� Basic idea [Ricart & Agrawala, 1981]:

� A process that wishes to enter a critical section, multicasts a 
message to all the processes

� A process can enter a CS when it gets acks from all the processes

� Rules wrt when to send an ack in order to ensure fulfillment of the 
requirements

� Assumptions

� Processes know each other addresses

� Every sent message will eventually be delivered

� Each process maintains a logical clock

� Timestamps include processId: <T,p> (i.e., total ordering)

� Each process maintains its state wrt token pocession

– RELEASED, WANTED, HELD
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Ricart & Agrawala algorithm

Upon initialization

state := RELEASED;

To enter the critical section

state:= WANTED;

Multicast a request to all the processes

T := the current timestamp;

wait until ((n-1) acks are received);

state := HELD;
Upon receiving a request with <T

i
,p

i
> at p

j
(i ≠ j)

if (state=HELD or (state=WANTED and (T,pj) < (Ti,pi) ) )
queue the request from p

i
without replying

else

send an ack to p
i

end if

Upon exiting from the critical section

state := RELEASED

reply to all queued messages 
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Evaluating of the 
Ricart & Agrawala algorithm

� Are safety and liveness satisfied?

� Is ordering satisfied?

� Shortcomings

� Many messages are sent in order to enter critical section

� 2(n-1) messages without HW support for multicast

� n messages with HW support for multicast 

� Not resilient to process crashes 
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Summary of distributed 
mutual exclusion algorithms

� Little resilience to failures

� Can be improved by additional mechanisms

� But it will never be perfect in an asynchronous system

� Central server requires the lowest number of messages 
but can become a bottleneck
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Requirements for 

distributed leader election

� In many distributed algorithms, one of the participating 
processes will play the role of a central coordinator
� Central server in the mutual exclusion algorithms

� Coordinator of a distributed transaction

� If a coordinator fails, one of the remaining processes can 
be elected to take over the central role
� Provide better fault-tolerance

� The main requirement
� Only one leader may exist at a time
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The “Bully” algorithm

� [Silberschatz et al, 1993]

� Prerequisites

� The processes know each other identities and addresses

� Process identifiers are totally ordered

� The algorithm selects the process with the biggest identifier

� Message types
� election: announces an election

� answer: is sent as a reply to the election message

� coordinator: announces the identity of the new coordinator
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The “Bully” algorithm II

� Election procedure

� The process (that detects that the coordinator has failed) 
sends the election message to the processes that have a 

bigger identifier

� It then waits for the answer message a limited amount of 

time

� If no answer message is received, the process considers itself 
as a new coordinator and sends a coordinator message to 

all the processes with smaller identifiers

� If an answer message is received, the process wait a limited 
time for a coordinator message. If none arrives, it starts a 

new election.
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The “Bully” algorithm III

� Election procedure (continued)

� If a process receives a coordinator message, it memorizes 

the identifier included in the message and considers the 
process as the new coordinator

� If a process receives an election message, it sends back an 
answer message and starts a new election - unless the 

process has already started one

� When a process recovers or joins the system, it starts a new 
election. If it has the biggest identifier, it makes itself a 
coordinator and announces it, even if there is another 
functioning coordinator
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Illustration for the 
“bully” algorithm

election

election

answer

answer

p1 p2 p3 p4Phase 1

C

p1 p2 p3 p4Phase 3

C

p1 p2 p3 p4Phase 2

C

C

timeout

answer

election

election

election

p1 p2 p3 p4Phase 4

After a while ……

coordinator
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Evaluation of the
“bully” algorithm

� Best case: n-2 coordinator messages

� Occurs when the process with the second highest id detects that 
the coordinator has failed

� Worst case: O(n2) messages

� Occurs when the process with the lowest id detects that the 
coordinator has failed

� => (n-1) processes start an election

� Ring-based algorithm is more efficient wrt the number of 
messages
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The ring-based algorithm
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Then it must inform all other
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…it is possible to handle 

multiple elections that have 
been started concurrently


