
INF 5040 2007 1

Frank Eliassen, SRL & Ifi/UiO 1

Mobil and ubiquitous

computing

INF 5040 autumn 2007

lecturer: Frank Eliassen

Frank Eliassen, SRL & Ifi/UiO 2

Motivation

�Mobil computing is concerned with exploiting
the connectedness of portable devices

�Ubiquitous computing is about exploiting the
increasing integration of (small/tiny) computing
devices in our everyday physical world

�Mobile and ubiquitous computing require
particular solutions in many areas caused by
dynamically changing computing environment:
users, devices, and software components

INF 5040 2007 2

Frank Eliassen, SRL & Ifi/UiO 3

Focus of this lecture

�Present open questions and research
issues rather than solutions

�Student presentations will address some
solution approaches

� context-aware adaptation middlewares

� middleware for wireless sensor networks

Frank Eliassen, SRL & Ifi/UiO 4

Open questions (some)

�How can software components associate and
interoperate with one another while devices
move, fail or spontaneously appear?

�How can systems become integrated with the
physical world through sensing and context
awareness?

�How to adapt to small devices’ lack of
computation and I/O resources?

�How to handle security in volatile, physically
integrated systems?

INF 5040 2007 3

Frank Eliassen, SRL & Ifi/UiO 5

Fields and subfields of mobile

and ubiquitous computing

�Mobile computing

�Ubiquitous computing

�Wearable computing

�Context-aware computing

Frank Eliassen, SRL & Ifi/UiO 6

Volatile systems (1 of 2)

� Common system model for mobile and ubiquitous
computing (and their subfields)

� Changes (or failures) are considered common rather
than exceptional (in contrast to other types of
systems where changes or failures are considered to
be exceptions)

� Forms of volatility
� failures of devices and communication links
� changes in the characteristics of communication such as

bandwidth
� the creation and destruction of associations – logical

communication relations – between software components
resident on the devices

� Mobile and ubiquitous computing exhibit all of the
above forms of volatility.

INF 5040 2007 4

Frank Eliassen, SRL & Ifi/UiO 7

Volatile systems (2 of 2)

�Elements of the system model

� smart spaces

� device model

� volatile connectivity

� spontaneous interoperation

Frank Eliassen, SRL & Ifi/UiO 8

Smart spaces: environments within

which volatile systems subsist

�A physical place/room with embedded services.
The services are provided only or principally
within that space

�Movements or ’appearance or disappearance’ in a
smart space:
� Physical mobility

� Logical mobilitet

� Service/device appearence

� Service/device disappearance

�GAIA: active spaces
� http://gaia.cs.uiuc.edu/

INF 5040 2007 5

Frank Eliassen, SRL & Ifi/UiO 9

Smart rooms that respond to a user

with an active badge

2. Infrared sensor detects user’s ID

Hello Roy 1. User enters

room wearing
active badge

User’s ID

3. Display responds
to user

Infrared

Hello Frank

Frank Eliassen, SRL & Ifi/UiO 10

Device model

�Limited energy

�Resource constraints

�Sensor and actuators

�Examples

� Motes

� Camera phones

INF 5040 2007 6

Frank Eliassen, SRL & Ifi/UiO 11

Volatile connectivity

� Variation between different technologies (Bluetooth,
WiFi, GPRS, etc)

� Bandwidth, latency

� Energy costs

� Financial costs to communicate

� Disconnection

� More likely in wireless networks

� Variable bandwidth and latency

� Packet loss due to weak signal

� Signal strength varies

� Difficult to determine timeout-values in higher layer protocols
due to varying conditions

Frank Eliassen, SRL & Ifi/UiO 12

Spontaneous interoperation

� In volatile systems, components routinely change the
set of components they communicate with

� take advantage of possibility to communicate with local
components in a smart space, or a device may want to offer
services to clients in its local environment

� Association: a logical relationship formed when at
least one of a given pair of components communicates
with the other over some well-defined period of time

� Associations can be pre-configured, or spontaneous.

� Interoperation: interaction during an association

INF 5040 2007 7

Frank Eliassen, SRL & Ifi/UiO 13

Pre-configured vs spontaneous

associations: examples

Spontaneous

Human-driven:

web browser and web servers

Data-driven:

P2P file-sharing applications

Physically-driven:

mobile and ubiquitous systems

Service-driven:

email client and server

Pre-configured

Frank Eliassen, SRL & Ifi/UiO 14

Association

� Requirement: a device that appears in a smart space
needs to bootstrap itself in the smart space

� Two steps for bootstrapping itself:
� Network bootstrapping (DHCP-server)
� Establish associations between components on the device and

services in the smart space
� The association problem

– How to constrain the scope to services in the smart space only
(e.g., the hotel room)?

� ‘Boundary principle’:
– smart spaces need to have system boundaries that correspond
accurately to meaningful spaces as they are normally defined
(territorially or administratively)

� Discovery-services: one approach to the association
problem (e.g., Jini: see Coulouris page 671)

INF 5040 2007 8

Frank Eliassen, SRL & Ifi/UiO 15

Service discovery in Jini

Printing
service

service
Lookup

service
Lookup

Printing

service

admin

admin

admin, finance

finance

Client

Client

Corporate
infoservice

2. Here I am:4. Use printing
service

Network

3. Request
‘printing’

1. ‘finance’ lookup

service

Frank Eliassen, SRL & Ifi/UiO 16

Discovery services

� A directory service that is used to register and look up
services in a smart space

� Requirements to discovery services

� Service attributes is determined at runtime

� Service discovery must be possible in a smart space without
infrastructure to host a service discovery service

� Registered services may spontaneously disappear

� The protocols used for accessing the directory need to be
sensitive to the energy and bandwidth they consume (cf. device
model)

INF 5040 2007 9

Frank Eliassen, SRL & Ifi/UiO 17

Interface to a discovery service

Return a set of registered services

whose attributes match the given

specification

serviceSet :=

query(attributeSpecification)

Method invoked to look up a service

Refresh the lease returned at

registration

refresh(lease)

Register the service at the given

address with the given attributes; a

lease is returned

lease := register(address, attributes)

Remove the service record registered

under the given lease

deregister(lease)

ExplanationMethods for service de/registration

Frank Eliassen, SRL & Ifi/UiO 18

Design choices for

discovery services

� Directory server or serverless
� Directory server: clients issue a multicast-request to

locate the server (as in Jini)
� Not all smart spaces have facilities for server implementations

� Serverless discovery: the participating devices
collaborate to implement a distributed discovery service

– Push model: servers multicast (‘advertise’) their descriptions
regularly, and clients run their queries against them

– Pull model: clients multicast their requests and devices providing
matching services, respond

� Both approaches are relatively resource demanding (battery,
bandwidth) in their pure form

� Exercise: how to improve the pull model?

INF 5040 2007 10

Frank Eliassen, SRL & Ifi/UiO 19

Interoperation

� How can components that want to associate determine
what protocol they can use to communicate?

� Main problem is incompatibility between software
interfaces (components need not have been designed
together)

� Two approaches:
� Adapt interface to each other (interface adaptation): difficult
� Constrain interfaces to be identical in syntax across as wide a

class of components as possible
– Example: Unix pipes (read, write)

– Example: The set of methods defined in HTTP (GET, POST, ...)
– Such systems are called data oriented
– Require additional mechanisms to describe type and value of data
exchanged, such as the processing semantics of the server (difficult!)

– Data oriented programming models: event-systems, tuple
spaces, direct device interoperation (devices brought into direct
association)

Frank Eliassen, SRL & Ifi/UiO 20

Sensing and context

awareness

� How can systems be integrated with the physical world
through sensing and context awareness?

� Sensing: use sensors to collect data about the
environment

� Context aware systems: can respond to its (sensed)
physical environments (location, heat, light intensity,
device orientation, presence of a device, etc.) and the
context can determine its (further) behaviour

� Context of an entity (person, place or thing): an aspect
of its physical circumstances of relevance to system
behaviour

INF 5040 2007 11

Frank Eliassen, SRL & Ifi/UiO 21

Sensors

� Combination of hardware and software

� Sensors are the basis for determining contextual values

� Location, velocity, orientation, ...

� Temperature, light intensity, noise, ...

� Presence of persons or things (e.g., based on RFID – electronic
labels - or Active Badges)

� An important aspect of a sensor is its failure model

� Some are simple (e.g., a thermometer often has known error
bounds and distribution), some are complicated (e.g., accuracy
of satellite navigation units depend on dynamic factors)

Frank Eliassen, SRL & Ifi/UiO 22

Sensor architectures

� Applications normally operate on more abstract values
than sensors can produce

� Sensor abstractions important to avoid application level
concerns with the peculiarities of individual sensors

� Therefore common to build a software architecture for
sensor data as hierarchies
� Nodes at a low hierarchical level provide sensor data at a low

level of abstraction (longitude/latitude of a device)

� Nodes at higher hierarchical levels (closer to the root node)
provide sensor data at higher levels of abstraction (the device is
in Frank’s Cafe)

� Nodes at higher levels combine sensor data from lower
levels both to abstract and to increase reliability

INF 5040 2007 12

Frank Eliassen, SRL & Ifi/UiO 23

Context Toolkit: Example of

sensor software architecture

Attributes (accessible by polling) Explanation

Location Location the widget is monitoring

Identity ID of the last user sensed

Timestamp Time of the last arrival

Callbacks

PersonArrives(location, identity,

timestamp)
Triggered when a user arrives

PersonLeaves(location, identity,

timestamp)
Triggered when a user leaves

� System architecture for general context aware applications
� Bases on ’context-widgets’: resuable components that abstract over

some types of context attributes (hide low level sensor details)
� Example: Interface to a IdentityPresence widget class

Frank Eliassen, SRL & Ifi/UiO 24

Context Toolkit: Example of use

of IdentityPresence widget

�A PersonFinder widget constructed by using
IdentityPresence widgets ...

IdentityPresenceRoom A IdentityPresence Room B

PersonFinder

Floor pressure (generators) Video (generator)

Face recognition
Footstep recognition

(interpreter)
(interpreter)

Widgets

INF 5040 2007 13

Frank Eliassen, SRL & Ifi/UiO 25

Wireless sensor networks (WSN)

� Network consisting of a (typically high) number of small,
low-cost units or nodes that are more or less arbitrary
arranged (e.g., “thrown out” in high numbers in a certain
geographical area)

� Self-organising (ad-hoc network), functions
independently of an infrastructure

� The nodes have sensing and processing capacity, can
communicate wirelessly with a limited range (save
energy), and act as routers for each other

� Are volatile systems because nodes can fail (battery
exhaustion or otherwise destroyed (e.g., fire)),
connectivity can change due to nodes failures

Frank Eliassen, SRL & Ifi/UiO 26

Three architectural features of

wireless sensor networks

� Features driven by requirements of energy conservation
and continuous operation

� In-network processing: The nodes have processing
capabilities because processing is much less costly in
energy consumption than (wireless) communication. Can
be exploited to reduce the need for communication (only
communicate when there is a need for it)

� Disruption-tolerant networking: based on store-and-
forward transfer of data (not end-to-end)

� Data oriented programmeng of nodes: since nodes can
fail, we can not rely on programming techniques for
sensor nodes that refer to single nodes
� Directed diffusion: a common programming technique that takes

the above features into account

INF 5040 2007 14

Frank Eliassen, SRL & Ifi/UiO 27

Directed diffusion

� Nodes (sources) have sensing capabilities (e.g., can meaure
temperature) or properties (e.g. location) that they can compare to
needs for sensor information that they receive (as messages)

� Nodes that have a need for sensor information (sinks) declare this in
”interest messages” that they send to neighbour nodes.

A. Interest propagation

source

source

sink

B. Gradients set up C. Data delivery

source

source

sink

source

source

sink

Frank Eliassen, SRL & Ifi/UiO 28

Adaptation

� Adapt the behaviour of an application to a dynamically
varying context
� Varying capabilities of different devices

� Varying resource availability

� User needs and wishes

� Examples:

– Dynamically adapt media quality (e.g., video) to available bandwidth
and/or to user preferences, and/or to device capabilities (scaling
and/or transcoding within same media type or between media
types)

– Dynamically adapt user interface to situation of user or the
orientation of the device ...

� Media content providers can not in advance know about
all different devices now or in the future
=> requires generally dynamic approach to adaptation

INF 5040 2007 15

Frank Eliassen, SRL & Ifi/UiO 29

Example: MADAM middleware

� Integrates context management and adaptation
� http://www.ist-madam.org
� http://www.simula.no/departments/networks/projects/MADAM/

Changing context

network: QoSnoise positionlight

mobile user

Context changes

may impair service quality

Adaptation aims at improving

service quality

shared devicesbattery

monitored by

Adaptation

Managerinfluences

user needs

Application

affects

operating conditions

provided QoS

required QoS

adapts

Changing context

network: QoSnetwork: QoSnoisenoise positionpositionlightlight

mobile usermobile user

Context changes

may impair service quality

Adaptation aims at improving

service quality

shared devicesshared devicesbatterybattery

monitored by

Adaptation

Manager

Adaptation

Managerinfluences

user needs

influences

user needs

ApplicationApplication

affects

operating conditions

affects

operating conditions

provided QoSprovided QoS

required QoSrequired QoS

adapts

Influence

user needs

Context changes

may impair service

quality

Changing context

Affects

operating

conditions

Adaptation

middleware

required QoS

Provided QoS

Application

Adaptation aims at

optimizing service quality

monitored by

adapts

Frank Eliassen, SRL & Ifi/UiO 30

Announcing INF5360Announcing INF5360Announcing INF5360Announcing INF5360::::
Seminar on Dependable and Seminar on Dependable and Seminar on Dependable and Seminar on Dependable and

Adaptive Distributed SystemsAdaptive Distributed SystemsAdaptive Distributed SystemsAdaptive Distributed Systems

� First time: Spring 2008 (Tuesdays 10:00 – 13:00)
� Seminar content

� Explores state-of-the art principles, methods, and techniques for
devising adaptive and dependable distributed systems.

� The seminars covers
� Architectural and infrastructural principles for adaptive and

dependable distributed systems.
� Adaptivity and dependability in service-oriented architectures, grid

computing, P2P systems, mobile and wireless environments.
� Approaches to improve the scalability of dependable and adaptive

systems.
� Evaluation and experience reports on dependable and adaptive

distributed systems and services.

� Builds on INF5040

INF 5040 2007 16

Frank Eliassen, SRL & Ifi/UiO 31

Summary

�Most challenges to mobile og ubiquitous
systems are caused by their volatile nature

� In such environments applications need to be
context aware and adaptive
� Integrated with the physical world through sensing
and context awareness

� Adapt to changes in the physical circumstances by
changing behavior

�There are many challenges, but yet only few
(comprehensive) solutions

