
1

Frank Eliassen, Ifi/UiO 1

Introduction to

Distributed Systems (DS)

INF5040/9040 autumn 2008

lecturer: Frank Eliassen

Frank Eliassen, Ifi/UiO 2

What is a distributed

system?

�Definition [Coulouris & Emmerich]

� A distributed system consists of hardware and
software components located in a network of
computers that communicate and coordinate their
actions only by passing messages.

�Definition [Lamport]

� A distributed system is a system that prevents you
from doing any work when a computer you have
never heard about, fails.

2

Frank Eliassen, Ifi/UiO 3

Types of distributed system

�Distributed Computing Systems
� Used for high performance computing tasks
� Cluster computing systems
� Grid computing systems

�Distributed Information Systems
� Systems mainly for management and integration of
business functions

� Transaction processing systems
� Enterprise Application Integration

�Distributed Pervasive Systems
� Mobile and embedded systems
� Home systems
� Sensor networks

Frank Eliassen, Ifi/UiO 4

A distributed system organized as

middleware

� Layer of software offering a single-system view

�Offers portability and interoperability

� Simplifies development of distributed applications
and services

Distributed

applications

and services

DISTRIBUTION MIDDEWARE

Platform Independent API

Platform Dependent API

. . .
Local OS

1
Local OS

2

Local OS

n

- transaction oriented (ODTP XA)

- message oriented(IBM MQSeries)

- remote procedure call (X/Open DCE)

- object-based (CORBA, COM, Java)

3

Frank Eliassen, Ifi/UiO 5

Implications of distributed systems

� Independent failure of components

– “partial failure” & incomplete information

� Unreliable communication

– Loss of connection and messages. Message bit errors

� Unsecure communication

– Possibility of unauthorised recording and modification of messages

� Expensive communication

– Communication between computers usually has less bandwidth, longer
latency, and costs more, than between independent processes on the
same computer

� Concurrency

– components execute in concurrent processes that read and update
shared resources. Requires coordination

� No global clock

– makes coordination difficult

Frank Eliassen, Ifi/UiO 6

Requirements leading to

distributed systems

� resource sharing
– the possibility of using available resources any where

� openness
– an open system can be extended and improved incrementally

� scalability
– serve more users, provide shorter response times

� fault tolerance
– maintain availability even when individual components fail

� heterogeneity
– network and hardware, operating system, programming
languages, implementations by different developers

4

Frank Eliassen, Ifi/UiO 7

Resource sharing

�The opportunity to use available hardware,
software or data any where in the system

�Resource managers control access, offer a
scheme for naming, and controls concurrency

�A resource manager is a software module that
manages a resource of a particular type

�A resource sharing model describes how
� resources are made available

� resources can be used

� service provider and user interact with each other

Frank Eliassen, Ifi/UiO 8

Models for resource sharing

� Client-server resource model
� Server processes act as resource managers, and offer services

(collection of procedures)

� Client processes send requests to servers

� Object-based resource model
� Any entity in a process is modeled as an object with a message

based interface that provides access to its operations

� Any shared resource is modeled as an object

5

Frank Eliassen, Ifi/UiO 9

Openness

� An open DS can be extended and improved incrementally

� Requires a uniform IPC mechanism and publication of
component interfaces (e.g., subject to standardisation)

� IETF RFC: Protocol specifications (www.ietf.org)

� OMG: interface specifications etc. (www.omg.org)

� New components can be integrated with existing
components

Frank Eliassen, Ifi/UiO 10

Concurrency

�Components in DS execute in concurrent
processes

�Components access and update shared resources
(e.g., variables, data bases, device drivers)

� Integrity of the system may be violated if
concurrent updates are not coordinated

� Preservation of integrity requires concurrency
control where concurrent access to the same
resource is synchronized

6

Frank Eliassen, Ifi/UiO 11

Scalability

� A system is scalable if it remains effective when there is
a significant increase in the amount of resources and
number of users

� Internet: no of users and services has grown enormously

� Scalability denotes the ability of a system to handle an
increasing future load

� Requirements of scalability often leads to a distributed
system architecture (several computers)

Frank Eliassen, Ifi/UiO 12

Scalability : challenges

� Controlling the costs of physical resources
� A system with n users is resource-scalable if the amount of

resources required to support them is at most O(n)

� Controlling the performance loss (when the amount of
data increases)
� A system is performance scalable if the time it takes to access

hierarchically ordered data is at most O(log n) where n is the
amount of data

� Preventing software resources running out:
� Dimensioning data structures a.o. such that the system can

meet future requirements (difficult – cf. IP addresses)

� Avoiding performance bottlenecks
� require decentralized algorithms (partitioning, caching and

replication)

7

Frank Eliassen, Ifi/UiO 13

Failure handling

� Hardware, software and network fail!!

� DS must maintain availability even in cases where
hardware/software/network have low reliability

� Failures in distributed systems are partial
� makes error handling particularly difficult

� Many techniques for handling failures
� Detecting failures (checksum a.o.)

� Masking failures (retransmission in protocols, replication …)

� Tolerating failures (as in web-browsers)

� Recovery from failures

� Redundancy (replicate servers in failure-independent ways)

Frank Eliassen, Ifi/UiO 14

Heterogeneity

� Variations and differences that must be handled
� Network

– The Internett-protocol is implemented over many different networks

� Hardware

– difference in representation of data types on different processors

� Operating system

– API to the same protocol and services varies

� Programmng languages

– different representation of character set and data structures

� Implementation by different developers

– ensure that different programs can communicate
• requires agreement on a number of things (cf. standards)

8

Frank Eliassen, Ifi/UiO 15

Transparency

�Transparency hides the consequences of
distribution

�Transparency has different dimensions

�These represents different properties a
distributed system might have (metric to assess
the design of a system)

Frank Eliassen, Ifi/UiO 16

Access transparency

� Enables local and remote resources/components
to be accessed using identical operations

� Example: File system operations in NFS

� Example : Navigation in www

� Example : SQL-queries in distributed data bases

�Components that do not have transparent
access can not easily be moved to another
computer

9

Frank Eliassen, Ifi/UiO 17

Location transparency

� Enables local and remote resources/components to be
accessed without knowledge of their location

� Example: File system operations in NFS

� Example : Web pages (URLs) in www

� Example : Tables in distributed databases

Frank Eliassen, Ifi/UiO 18

Other transparency

dimensions (Coulouris)

�Concurrency transparency

�Replication transparency

�Failure transparency

�Mobility transparency

�Performance transparency

�Scaling transparency

10

Frank Eliassen, Ifi/UiO 19

Summary

� Distributed systems:

� harware and software-components located in a network of computers
that communicates and coordinates their actions exclusively by sending
messages

� Consequences of distributed systems

� Independent failure of components

� Unsecure communication

� No global clock

� Requirements like resource sharing, openness, scalability, fault
tolerance and heterogeneity can be satisfied by distributed systems

� Distributed systems organized as middleware

� Harvest potential advantages of distributed systems without
having to pay for all their challenges and problems
(transparency)

Frank Eliassen, Ifi/UiO 20

Design of distributed

objects

INF5040/9040 autumn 2008

lecturer: Frank Elassen

11

Frank Eliassen, Ifi/UiO 21

Design of distributed

objects

�Many has experience with design of local
objects that are all located in the
execution environment of a OO
programming language

�Design of distributed objects is different!

Frank Eliassen, Ifi/UiO 22

Design of distributed

objects

12

Frank Eliassen, Ifi/UiO 23

Local vs distributed objects

�References

�Activation/deactivation

�Migration/mobility

� Persistence

� Latency for method calls

�Concurrency

�Communication

� Security

�Many pit falls!!

Frank Eliassen, Ifi/UiO 24

Object references

�References to objects in OOPS are usually
pointers to memory cells

�References to distributed objects are more
complex
� location information

� security information

� references to object type

�References to distributed objects are larger
(e.g., 350 byte i Orbix)

13

Frank Eliassen, Ifi/UiO 25

Activation/deactivation

�Objects in OOPS reside in main memory during
their whole life time

�This does not always suit distributed objects

� no of objects

� objects can be used over a long period of time

� some servers must be shut down from time to time
without stopping the applications

�Distributed object implementations are

� read into main memory (activation)

� removed from main memory (deactivation)

Frank Eliassen, Ifi/UiO 26

Activation/deactivation

�Issues:
� repository for implementations

� association between objects and processes

� explicit vs implicit activation

� when to deactivate objects?

� how to handle concurrent calls

�Who decides?
� Designer?

� Programmer?

� Administrator?

14

Frank Eliassen, Ifi/UiO 27

Persistence

� Stateless vs stateful objects

� Stateful objects must store its state in a persisent
repository between

� object-deactivation and

� object-activation

�Can be achieved by

� making an external representation for file system

� map to relational database

� object database

�Decided at object design time

Frank Eliassen, Ifi/UiO 28

Object life cycle

�Objects in OOPS exist in a single virtual
machine

�Distributed objects can be created on
different computers

�Distributed objects can be copied or moved
from one computer to an other

�Removal of objects by “garbage collection”
is difficult in a distributed environment

�Life cycle must be considered at design
time of distributed objects

15

Frank Eliassen, Ifi/UiO 29

Latency of method calls

�To execute a local method call requires a few
hundred nanoseconds

�A remote method call requires between 0.1 og 10
milliseconds, or more

�⇒ interfaces of distributed objects must be
constructed such that

� methods perform larger processing tasks

� highly frequent method calls are not required

Frank Eliassen, Ifi/UiO 30

Parallelism

�Execution of objects in OOPS

� sequential

� concurrent with multiple threads

�Distributed objects execute in parallel

�Can be used to accelerate computations

16

Frank Eliassen, Ifi/UiO 31

Communication

�Method calls in OOPS are synchronous

�Alternatives for distributed objects:
� synchronous requests

� oneway requests

� deferred synchronous requests

� asynchronous requests

�Who decides for each call?
� designer of service?

� designer of client?

Frank Eliassen, Ifi/UiO 32

Security

� Security in OO applications can be handled at
session level

�Objects in OOPS do not have to be written in a
particular way

� For distributed objects
� Who issues the method call?
� How do we know that the client is the one he claims to
be?

� How can we decide whether to grant the client the right to
use the service?

� How can we prove that we have delivered the service to
enable later billing for the use of the service?

17

Frank Eliassen, Ifi/UiO 33

Summary

� Design of distributed objects is different from design of
programs where all object are located in the same
process

� Many pit falls!!

