
1

INF5040 H2008, Frank Eliassen 1

System models for

distributed systems

INF5040/9040 autumn 2008

lecturer: Frank Eliassen

INF5040 H2008, Frank Eliassen 2

System models

� Motivation
� illustrate common properties and design choices for

distributed system in a single descriptive model

� Two types of models
� Architecture models: define the main components of the

system, what their roles are and how they interact, and how
they are deployed in a underlying network of computers.

� Fundamental models: formal description of the properties
that are common to architecture models. Three fundamental
models:

– interaction models

– failure models

– security models

2

INF5040 H2008, Frank Eliassen 3

Architectural styles

� Concern the logical organization of distributed
systems into software components and connectors
� Components are replaceable units within its environment

� Connectors are mechanisms that mediate communication,
coordination and cooperation among components

� Important architectural styles for DS
� Layered architectures

� Object-based architectures

� Event-based architectures

� Shared data spaces

INF5040 H2008, Frank Eliassen 4

Layered architecture

3

INF5040 H2008, Frank Eliassen 5

Object-based architecture

INF5040 H2008, Frank Eliassen 6

Event-based architecture

4

INF5040 H2008, Frank Eliassen 7

A data-centered architecture:

Shared data-spaces

INF5040 H2008, Frank Eliassen 8

Client-server model

Process

Server

Computer

Client

Client
Server

request

response

request

response

Known for more than 20 years, very popular in DS design

5

INF5040 H2008, Frank Eliassen 9

Variants of client-server (1)

Server

Client

Client

Server

Server

Multiple server processes:
- server realised as a number of server-processes

- several access points

tjeneste

INF5040 H2008, Frank Eliassen 10

Variants of client-server (2)

Client/server model with proxy-server:
Cache: stores recently-used data objects that are closer to the client than the

original objects themselves.

Proxy server: cache that is shared between several clients

Proxy

server

Client

Client Web server

Web server

6

INF5040 H2008, Frank Eliassen 11

Variants of client-server (3)

Mobile code (applets) . Enables e.g., “push-model”: the server

invokes the client

ServerClient

applet code

ServerClient applet

INF5040 H2008, Frank Eliassen 12

Variants of client-server (4)

Mobile agents . Program (code + data) that migrates between computers

and executes a task on behalf of someone.

ServerClient

ServerClient Mobiel
agent

ServerClient Mobiel
agent

ServerClient Mobile
agent

7

INF5040 H2008, Frank Eliassen 13

Thin vs thick clients

� “Historically” the trend for application architectures has
switched between thick and thin clients

� One variant is network PCs

� Trend today?

� seems to be thin clients

� small handheld clients (WAP, PDA, …)

� ubiquitous computing

INF5040 H2008, Frank Eliassen 14

Thick clients

� Identical software installed in all clients
�Allows individual installation and configuration
�Always available, simple licensing
� Problems

� users can invalidate the installation
� difficult to keep software “up to date”

Application

logic

Client Server

data

8

INF5040 H2008, Frank Eliassen 15

Network-computer/PC
� Network computers attempt to avoid installation

problems in client
� Software is downloaded to client as needed

� Configuration can be determined in advance (maintained in one
place)

� Problems
� availability (server fails)

� licensing problems (license pool in stead of license for each
computer)

File server

Downloading software

(OS, applications SW,

data files)

Client

Network computer

cache

INF5040 H2008, Frank Eliassen 16

Thin clients
� Thin clients attempt to avoid installation problems in client

� Thin client: software layer that supports GUI (X.11 server, Web-
browser, …)

� application program executes on remote application server (cf. JEE)

� Problems

� availability (server fails)

� licensing problems (licensing pool rather than license for each
machine)

� highly interactive applications

Middle tier

Application

logic
Server

dataMW-services

Thin

client

9

INF5040 H2008, Frank Eliassen 17

Decentralized architectures

peer-to-peer systems:
Processes have identical roles : each process acts both as a client and a server

Examples:
file-sharing systems, cooperation systems (CSCW) as “whiteboard” applications

interactive network based games

Coord.

code

Application

Coord.

code

Applikation

Coord.

code

Applikasjon

INF5040 H2008, Frank Eliassen 18

Spontaneous networks

� Clients carry mobile devices (laptop, PDA, ….) between different
network environments (hotel network, airport network, …) and can
exploit local and remote services while on the move (ubiquitous
computing).

Hotel’s

wireless

network

Music

service

Alarm

service

Print/fax

service

TV/PC

Discovery

service

Laptop

PDA Mobile

device of

guest

gatewayInternet

register

lookup

10

INF5040 H2008, Frank Eliassen 19

Fundamental models

� Properties shared by all architecture models
� communicates by sending messages across a network

� requirements of performance, reliability, and security

� Fundamental models
� abstracts over unnecessary details

� used to address questions like

– what are the most important entities in the system?

– how do they interact?

– what are the characteristics that affect their individual and collective
behaviour?

� The purpose of fundamental models
� to make explicit all relevant assumptions about the system we are

modeling

� to find out what is generally feasible and not feasible under the
given assumptions

INF5040 H2008, Frank Eliassen 20

Fundamental models

�Aspects of distributed systems we want to express
� Interaction model

– processes, messages, coordination (synchronisation and
ordering)

– must reflect that messages are subject to delays, and that delay
limits exact coordination and maintenance of global time

� Failure model
– defines and classifies failures that can occur in a DS
– basis for analysis of effects of failures and for design of systems

that are able to tolerate failures of each type while continuing to
run correctly

� Security model
– defines and classifies security attacks that can occur in a DS
– basis for analysis of threats to a system and for design of

systems that are able to resist them

11

INF5040 H2008, Frank Eliassen 21

Two variants of the

interaction model

� Synchronous distributed systems
� the time to execute each step of a process has known lower and

upper bounds

� each message transmitted over a channel is received within a
known bounded time

� each process has a local clock whose drift rate from real time has a
known bound

� Asynchronous distributed systems
� the time to execute each step of a process can take arbitrarily long

� each message transmitted over a channel can be received after an
arbitrarily long time

� each process has a local clock whose drift rate from real time can
be arbitrarily large

INF5040 H2008, Frank Eliassen 22

Significance of synchronous

vs asynchronous DS

� Many coordination problems have a solution in
synchronous distributed systems, but not in asynchronous
� e.g., “The two army problem” or “Agreement in Pepperland” (see

[Coulouris])

� Often we assume synchrony even when the underlying
distributed system in essence is asynchronous
� Internet is in essence asynchronous but we use timeouts in

protocols over Internet to detect failures

� based on estimates of time limits

� but: design based on time limits that can not be guaranteed, will
generally be unreliable

� Is it possible to build synchronous systems?

12

INF5040 H2008, Frank Eliassen 23

Ordering of events

� distributed coordination protocols have a need for
ordering of events in time (“happened before”-
relationship)
– events: sending and receiving messages

– example: update of replicated data must generally be done in
the same order in all replica

– difficult to use physical clocks in computers for coordination
(e.g.,. clock values in messages)

• have limited time resolution and ticks with different rates
(clock drift)

• basic properties of message exchange limit the accuracy of
the synchronization of clocks in a DS [Lamport 78]

– possible to describe logical ordering of events even without
accurate clocks by using logical clocks [Lamport78]

INF5040 H2008, Frank Eliassen 24

Logical clocks

� Principle
� If two events happens in the same process, then they occur in

the same order as in the process that observed them

� When a message is transmitted between two processes, the
event “send message” will always happen before the event
“receive message”

� Happened-before relationship
� is derived by generalizing the two relationships above such that

if x, y and z are events and x “happened-before” y and y
“happened before” z, then x “happened-before” z

� logicial clocks extends the idea above
� more later in the course

13

INF5040 H2008, Frank Eliassen 25

Example: e-mail exchange

Y

X

Z

send(m)

rcv(m)

m1

m2

rcv(m)

A

send(Re:m)

rcv(Re:m)

send(Re:m)

rcv(Re:m) rcv(Re:m)

rcv(Re:m)

m1m3
m2

Time

INF5040 H2008, Frank Eliassen 26

A failure model

� Is a definition of in which way failures may occur in
distributed systems

� Provides a basis for understanding the effects of failures

� Definition of the failure model of a service enables
construction of a new service that hides the faulty
behaviour of the service it builds upon

� example: TCP on top of IP

– TCP: reliable byte-stream service

– IP: unreliable datagram service

14

INF5040 H2008, Frank Eliassen 27

Specification of failure model

� Specification of failure models requires a way to describe
failures

� One approach is to classify failure types (Cristian, 1991)
(Hadzilacos & Toueg, 1994)
� Omission failures

� Arbitrary failures

� Timing failures

� System model:

send m

outgoing message buffer

receive m

communication channel

incoming message buffer

INF5040 H2008, Frank Eliassen 28

Omission failure (1)

� A process or channel fails to perform actions that it is
supposed to do

Failure class Affects Description

Fail-stop Process Process halts and remains halted.

Other processes may detect this

state.

Crash Process Process halts and remains halted.

Other processes may not be able to detect

this state.

Omission Channel A message inserted in an outgoing message

buffer never arrives in the other end’s

incoming buffer.

15

INF5040 H2008, Frank Eliassen 29

Omission failure (2)

Failure class Affects Description

Send-omission Process A process completes a send-operation, but

the message is not put into the outgoing

message buffer.

Receive-omission Process A message is put into a process’s incoming

message buffer, but the process does not

receive it.

INF5040 H2008, Frank Eliassen 30

Omission failure (3)

� Usual assumption that a server has “fail-stop” failure
model
� the server crashes in a “nice” way

– it halts completely

– other servers may detect it has failed

� if the server nevertheless fails in a different way, the software
that uses the server, may fail in unpredictable ways

� It is difficult to detect omission failures for processes in
an asynchronous system

16

INF5040 H2008, Frank Eliassen 31

Arbitrary failures (Byzantine failures)

� Process or channel may exhibit arbitrary behaviour
when failing,
� send/receive arbitrary messges at arbitrary intervals

� a process may halt or perform “faulty” steps

� a process may omit to respond now and then

� By adopting a byzantine failure model, we can attempt
to make systems that are “ultra-reliable” (handles HW
failures, and provide guaranteed response times)
� control systems in air planes

� patient monitoring systems

� robot control systems

� control systems for nuclear power plants

INF5040 H2008, Frank Eliassen 32

Timing failure

� Applicable in synchronous distributed systems
� responses that are not available to clients in a specified time

interval

� timing guarantees requires guaranteed access to resources when
they are needed

� Examples:

� control and monitoring systems, multimedia systems
Failure class Effects Description

Clock Process Process’s local clock exceeds the bounds on

its rate of drift from real time

Performance Process Process exceeds the bounds on the interval

between two processing steps

Performance Channel A message’s transmission takes longer than

the stated bounds

17

INF5040 H2008, Frank Eliassen 33

Summary

� Two types of system models
� Arcitecture models: defines the components of the system,

the way they interact, and the way the are deployed in a
network of computers

– client-server models (many variants)

– peer processes (P2P)

– spontaneous networks (mobility)

� Fundamental models: formal description of the properties
that are common to all architecture models

– interaction models

– failure models

– security models (not covered in this course, but see e.g., INF3190)

