
1
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 1

Object interaction using RMI

INF 5040/9040 autumn 2008

Lecturer: Frank Eliassen

Frank Eliassen, SRL & Ifi/UiO 2

Plan

�Principles for realising remote
methods invocations (RMI)

�Object-servers

�Multi-threaded object servers

�CORBA RMI

�Java RMI

2
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 3

Layering of middleware

UDP or TCP

request-response protocols

marshalling and external data representation

RMI or RPC

Middleware services

Middleware

Applications

Frank Eliassen, SRL & Ifi/UiO 4

Plan

�Principles for realising remote
methods invocations (RMI)

�Object-servers

�Multi-threaded object servers

�CORBA RMI

�Java RMI

3
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 5

Layering of middleware

UDP og TCP

request-response protocols

marshalling and external data representation

RMI og RPC

Middleware

Middleware services

Applications

Frank Eliassen, SRL & Ifi/UiO 6

Client-server communication
RPC/RMI exchange protocols

Client Serverrequest message

DoOperation

sendReplyresponse message

getRequest
.
.
wait
.
.(continue)

select object
execute method

•Message structure

� Usually based on UDP or TCP

message type

request id

ROR

arguments

method name

4
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 7

Failure model for RPC/RMI

protocols

� Protocol can be exposed to
� omission failure

� process crash failure

� message order not guaranteed (UDP)

� Failure is detected as timeout in the primitive
DoOperation:
� recovery actions depend on the offered delivery guarantee

Frank Eliassen, SRL & Ifi/UiO 8

Failure and recovery for RPC/RMI

protocols (I)

� Timeout DoOperation
� Send request message repeatedly until

– response is avaialble, or

– assume server has failed (max no of retrans.)

� Duplicate request messages
� occur when request message is sent more than once

� can lead to operations being executed more than once for the same
requestl

� => must be able to filter duplicate requests (role of request id)

� Lost response messages

� server has already sent response message when it recieves a
duplicate request message

� => may have to execute the operation again to get the right
response
– OK for operations that are “idempotent”

5
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 9

Failure and recovery for RPC/RMI

protocols (II)

� Logs (histories):

� used by servers offering operations that are not “idempotent”

� contains response messages already sent

� Disadvantage of logs:

� storage requirement

� if a client is allowed to do only one request at a time to the same
server, the log can be limited in size (bounded by the number of
concurrent clients)

� at reception of the next request message from the same client the
server may delete the last response message for that client from the
log

Frank Eliassen, SRL & Ifi/UiO 10

RPC/RMI protocols: TCP vs UDP

� UDP has limited packet size
� => need for fragmentation/defragmentation protocols

�RPC/RMI protocols over TCP avoids this
problem
� TCP ensures reliable delivery of byte streams

� Problem:
� much overhead if the connection has to be created at
each request
=> need for optimization (leave connection open for
later reuse)

� upper bound on number of concurrent TCP-connections
could cause problems

6
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 11

Classification of RPC/RMI

protocols

� Classification after (Spector, 1982):
� basis for implementing different types of RMI and RPC

� Request (R) protocol
� Only Request-message. No response message from server

� No confirmation that operation has been performed

� Request-Reply (RR) protocol
� Reply-message confirms that the Request-message has been performed
� A new request from the client confirms reception of Reply-message

� Request-Reply-Acknowledge (RRA) protocol
� separate message from client to confirm reception of Reply-
message

� tolerates loss of Ack-message
– Ack with a given request id confirms all lower requests ids

Frank Eliassen, SRL & Ifi/UiO 12

RPC/RMI invocation semantics

� Reliability semantics of RPC/RMI under partial failures

Fault tolerance measures Invocation
semantics

Retransmit

Request message

Duplication Re-excute method

or

retransmit Reply

No (R) ____ ____ Maybe

Yes (RR) No Re-execute
method

At-least-once

yes (RR) Yes Retransmit Reply At-most-once

filtering

7
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 13

RMI invocation semantics in

object and RPC middlewares

� RMI in CORBA and Java have “at-most-once”
invocation semantics under partial failures

� referred to as synchronous requests

� CORBA allows other forms of synchronization that

provides other invocation semantics

� One-way operations: maybe-semantics

� SUN RPC: at-least-once semantics

Frank Eliassen, SRL & Ifi/UiO 14

Layering of middleware

UDP og TCP

request-response protocols

marshalling and external data representation

RMI og RPC

Middleware

Middleware services

Applications

8
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 15

Marshalling
External data representation

� “marshalling”
� serialize data structures to messages (sequence of data values)

� translate sequence of data values to an external representation

� “unmarshalling”

� inverse of “marshalling”

� External data representation (representation “on the wire”)
� a representation of data during transfer of the message

� Sun XDR (representation of most used data types)

� ASN.1/BER (ISO standard, based on “type-tags”, open)

� NDR (used in DCE RPC)

� CDR (used in CORBA RMI, binary layout of IDL types)

� Java Object Serialization (JOS)

� XML (used i SOAP: “RMI” protocol for Web Services)

Frank Eliassen, SRL & Ifi/UiO 16

Layering of middleware

UDP og TCP

request-response protocols

marshalling and external data representation

RMI og RPC

Middleware

Middleware services

Applications

9
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 17

Implementation of RMI

�Three main tasks :
� Interface processing

� Integration of the RMI mechanism into a programming language.

� Basis for realizing access transparency

� Communication
� message exchange (request-reply protocol)

� Object location, binding and activation
� Locate a suitable server process that hosts the remote object and bind

to the server

� Activate an object-implementation

� Basis for realizing location transparency

Frank Eliassen, SRL & Ifi/UiO 18

Elements of the RMI software (I)

�RMI interface processing: Client proxy
� Local “proxy” object for each remote object a client holds a
ROR (“stand-in” for remote object).

� The class of the proxy-object has the same interface as the
class of the remote object. Can perform type checking on
arguments

� Performs marshalling of requests and unmarshalling of
responses

� Transmits request-messages to the server and receive
response messages.

10
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 19

Elements of the RMI software (II)

�RMI interface processing: Dispatcher

� A server has one dispatcher for each class
representing a remote object.

� Receives requests messages

� Uses method id in the request message to
select the appropriate method in the skeleton
and passes on the request message

Frank Eliassen, SRL & Ifi/UiO 20

Elements of the RMI software (III)

�RMI interface processing: Skeleton
� A server has one skeleton for each class representing
a remote object

� Implements the methods in the remote interface

� A skeleton method unmarshals the arguments in the
request message and invokes the corresponding
method in the remote object.

� It waits for the invocation to complete and then
marshals the result, together with any exceptions, in a
reply message to the sending proxy’s method.

11
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 21

Objects and modules

involved in RMI

remote

object

table

Client ROR

module

client
remote object B

communication

module

objekt A

remote

object

table

Server ROR

module

skeleton &

dispatcher for

B’s class

proxy for B
request

reply

server

servant

Frank Eliassen, SRL & Ifi/UiO 22

Generation of proxies, dispatchers

and skeletons

Stubs
Skeletons

Precompile

Compile

client

implementation

Add server code

server

implementation

Compile

client

code

uses

IDL

definitions

Design

12
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 23

Server and client programs

� Server program contains
� the classes for the dispatchers and skeletons
� the implementation classes of all the servants that it
supports

� an initialization section: creates and initializes at least one
servant
– additional servants may be created in response to client requests

� register zero or more servants with a binder
� potentially one or more factory methods that allow clients to
request creation of additional servants

� Client program contains
� the classes and proxies for all the remote objects that it will
invoke

Frank Eliassen, SRL & Ifi/UiO 24

Factory pattern

source: S. Krakowiak, Middleware Architecture with Patterns and Frameworks,

http://sardes.inrialpes.fr/~krakowia/MW-Book/

13
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 25

RMI name resolution,

binding, and activation

� Name resolution
� corresponds to mapping a symbolic object name to an
ROR

� performed by a name service (or similar)

� Binding in RMI
� corresponds to locating the server holding a remote object
based on the ROR of the object and placing a proxy in the
client process’s address space

� Activation in RMI
� corresponds to creating an active object from a corresponding
passive object (e.g., on request). Performed by an activator
– register passive objects that are available for activation
– activate server processes (and activate remote object within them)

Frank Eliassen, SRL & Ifi/UiO 26

Locating the server of a

remote object

� Corresponds to mapping an ROR to a communication
identifier.
� integrated in ROR

– Address can be extracted directly from the object reference

� location service
– A location service is used by the client proxy at each request

� cache/broadcast
– Each client has cache of bindings (ROR, comm. identifier)

– If ROR not in cache, perform broadcast with ROR

– Servers that host the object respond with comm.identifier

� forward pointers or address hint (to e.g., location service)
– Used at object migration

� Combinations of the above

14
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 27

Remote method invocation

ORB locates server hosting the servant

source: S. Krakowiak, Middleware Architecture with Patterns and Frameworks,

http://sardes.inrialpes.fr/~krakowia/MW-Book/

Frank Eliassen, SRL & Ifi/UiO 28

Implicit and explicit binding

Distr_object* obj_ref; // Declare a system wide object reference

obj_ref = lookup(obj_name); // Initialize the reference to a distrb. obj

obj_ref->do_something(); // Implicit bind and invoke method

Distr_object* obj_ref; // Declare a system wide object reference

Local_object* obj_ptr // Declare a pointer to a local object

obj_ref = lookup(obj_name); // Initialize the reference to a distrb. obj

obj_ptr = bind(obj_ref); // Explicitly bind and get pointer to local proxy

obj_ptr->do_something(); // Invoke a method on the local proxy

15
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 29

Plan

�Principles for realising remote
methods invocations (RMI)

�Object-servers

�Multi-threaded object servers

�CORBA RMI

�Java RMI

Frank Eliassen, SRL & Ifi/UiO 30

Object-server:

Server tailored to support

distributed objects

�Services realized as objects that the server
encapsulates

� Services can be added or removed by creating and
removing remote objects

�Object servers act as places where objects can
live

�Object servers activate remote objects on demand

� Several ways to activate an object

16
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 31

Object servers must assign processing

resources to objects when they are

activated

�When an object is activated, which processing
resources should be assigned to the implementation?

� Activation policy
� A particular way of activating an object
� Different dimensions

– How to translate between ROR and local implementation?
– Should the server be single-threaded or multi-threaded?
– If multi-threaded, how to assign threads to objects and requests?
One thread per object? One per request?

– Transient vs persistent objects, etc

� No single activation policy that fits all needs
� Object servers should support several concurrent activation
policies

� Objects can be grouped according to which activation policy they
are governed by

Frank Eliassen, SRL & Ifi/UiO 32

Organization of object servers that

support different activation policies

� Object-adapter: software that implements a specific activation
policy (supported by CORBA Portable Object Adapter (POA))

skeleton

Object adapter A Object adapter B

dispatcher

skeleton skeleton

OS

17
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 33

Object references

� Remote-object-reference (ROR)

� Identifier for remote objects that is valid in a distributed
system

� Must be generated in a way that ensures uniqueness over
timie and space (=> a ROR can not be reused)

� Example:

Internet address port number adapter name object key
interface of
remote object

Frank Eliassen, SRL & Ifi/UiO 34

Plan

�Principles for realising remote
methods invocations (RMI)

�Object-servers

�Multi-threaded object servers

�CORBA RMI

�Java RMI

18
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 35

Why use several processes or threads

in distributed systems?

�Better performance

�Better exploitation of resources

Frank Eliassen, SRL & Ifi/UiO 36

Object-servers must assign processing

resources to objects when objects are

activated

�When an object is activated, which processing
resources should be assigned to its
implementation?

� Create a new process or thread?

� Are there several ways this can be done?

� Is there a best way (cf. activation policies)?

19
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 37

Multi-thread server

Request

In-Out

2 ms processing

2.5 ms w/cache

8 ms delay

2 ms w/cache ave

processors Max. calls/sec# threads

1 1 100no disk caching

1 2 125no disk caching

1 2 400disk caching

2 2 444disk caching

2 3 500disk caching

Frank Eliassen, SRL & Ifi/UiO 38

Alternative threading-policies

for object activation

a. Thread-per-request b. Thread-per-connection c. Thread-per-object

remote

workers

I/O remote
remote I/O

per-connection threads per-object threads

objects objects
objects

20
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 39

Plan

�Principles for realising remote
methods invocations (RMI)

�Object-servers

�Multi-threaded object servers

�CORBA RMI

�Java RMI

Frank Eliassen, SRL & Ifi/UiO 40

CORBA middleware

�Offers mechanisms that allow objects to invoke
remote methods and receive responses in a
transparent way
� location transparency

� access transparency

� The core of the architecture is the Object Request
Broker (ORB)

� Specification developed by members of the Object
Management Group (www.omg.org)

21
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 41

IDL

Z

foo()

CORBA RMI

Object Request Broker (ORB)

Clients may invoke methods of remote objects without worrying about:

object location, programming language,

operating system platform, communcation

protocols or hardware.

Common object model

Diffferent

programming languages

(or object models)

IDL

X

anrop Z’s

metode foo()

IDL

Y

RMI over IIOP

Frank Eliassen, SRL & Ifi/UiO 42

CORBA IDL

�Language for specifying CORBA object types

�Can express all concepts in the CORBA object model

�OMG/IDL is

� not dependent on a specific programming language

� syntactically oriented towards C++

� not computationally complete

�Different bindings to programming languages
available

22
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 43

CORBA object model and IDL

interface Organisation {

readonly attribute string name;

}

Implicit supertype Object supertype

interface Club : Organisation {

exception NotInClub{};

readonly attribute short noofMembers;

readonly attribute Address addr;

attribute sequence<Trainer> trainers;

attribute sequence<Players> team;

void sale(in Player s)

raises NotInClub;

};

Object type

return value

parameter-direction

exception

Frank Eliassen, SRL & Ifi/UiO 44

Dynamic

invocation

interface

client

Client program

proxy for A

O
R
B

C
o
r
e

Impl.

repository

Servant B

sk
e
le
to

n

server

O
b
je

ct

a
d
a
p
to

r

O
R
B

C
o
r
e

CORBA architecture

Interface

repository

Description of

registered types:

-methodes

-- parameters

- ...

Run time catalogue:

- classes a server impls.

- activation info for

server and object impl.

- ...

POA: manages and

controls object impl:

- registering object impl.

- activating object impl.

- ...

request

reply

Impl.

repository

IIOP

23
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 45

CORBA ROR format (IOR) reflects the

organization of object servers

Type name

(repository id)

Protocol and

Address details

Object Key

(Adapter and

Object name)

CORBA Interoperable Object Reference (IOR)

skeleton

Object adapter Object adapter

dispatcher

skeleton skeleton

OS

Frank Eliassen, SRL & Ifi/UiO 46

CORBA RMI binding (I)

� Binding in RMI corresponds to mapping object references
(ROR) to “servants”
� servant: implementation of one or more CORBA objects

� ROR in CORBA: Interoperable Object Reference (IOR)

� Location process:
� based on information encoded in the object reference

Type name

(repository id)

Protocol and

Address details

Object Key

(Adapter and

Object name)

CORBA Interoperable Object Reference (IOR)

IIOP: host name/port no Proprietary format (of the ORB

that created the IOR)

24
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 47

CORBA RMI binding (II)

� Transient IOR
� Valid only as long the corresponding server process is available
� After the server process has terminated, the IOR will never be valid again
� The location of the server process is encoded into the IOR of the object.

� Persistent IOR
� continue to function (denote same CORBA object) even when the server

process terminates and later starts up again
� An activator (implementation repository) can automatically start a server

process when a client is using a persistent object reference and terminate
the server again after a certain idle time

� The location of the activator is encoded into the IOR of the object IOR. The
actual location of the server process must be resolved via the activator.

� A persistent POA must be registered at an activator.
� A persistent POA creates persistent IORs and knows how to activate

persistent objects that it manages

Frank Eliassen, SRL & Ifi/UiO 48

Layering of middleware

UDP og TCP

request-response protocols

marshalling and external data representation

RMI og RPC

Middleware

Middleware services

Applications

25
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 49

CORBA Services

Object Request Broker (ORB)

Application objects

CORBA

facilities

Compound doc

Help

Printing

…….

Object services

Naming

Lifecycle

Persistence

Events

Transactions

Trading

Time

Concurrency

Relationships

Externalization

Querying

Licensing

Security

Properties

Domain

interfaces Business objects

E-Commerce

Financial Domain

Healthcare

Telecomm

…….

Frank Eliassen, SRL & Ifi/UiO 50

Plan

�Principles for realising remote
methods invocations (RMI)

�Object-servers

�Multi-threaded object servers

�CORBA RMI

�Java RMI

26
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 51

�Java Remote Method Invocation (RMI)

Frank Eliassen, SRL & Ifi/UiO 52

Java RMI

�Remote Method Invocation (RMI) supports
communication between different Java Virtual
Machines (VM), and possibly over a network

�Provides tight integration with Java

�Minimizes changes in the Java language/VM

�Works for homogeneous environments (Java)

�Clients can be implemented as applet or
application

27
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 53

Java Object Model

�Interfaces and Remote Objects

�Classes

�Attributes

�Operations/methods

�Exceptions

�Inheritance

Frank Eliassen, SRL & Ifi/UiO 54

Java interfaces to remote

objects

�Based on the ordinary Java interface concept

�RMI does not have a separate language (IDL) for
defining remote interfaces

�Pre-defined interface Remote

�All RMI communication is based on interfaces that
extends java.rmi.Remote

�Remote classes implement java.rmi.Remote

�Remote objects are instances of remote class

28
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 55

Java remote interface:

Example

interface Team extends Remote {

public:

String nama()throws RemoteException;

Trainer[] trained_by() throws RemoteException;

Club club() throws RemoteException;

Player[] player() throws RemoteException;

void chooseKeeper(Date d) throws RemoteException;

void print() throws RemoteException;

};

interface name declares the Team interface as “remote”

remote operation

Frank Eliassen, SRL & Ifi/UiO 56

Java RMI parameter passing

� Atomic types transferred by value

� Remote objects transferred by reference

� None-remote objects transferred by value

Returns a copy of the Address-object

class Address {

public:

String street;

String zipcode;

String town;

};

interface Club extends Organisation, Remote {

public:

Address addr() throws RemoteException;

...

};

29
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 57

Architecture of Java RMI

ServerServerClientClient

StubStub RegistryRegistry

InterfacesInterfaces
Generic

Dispatcher

Generic

Dispatcher

ActivationActivation

InterfacesInterfaces

RMI Runtime (RMI Runtime (rmidrmid ,rmiregistry,rmiregistry))

Non-persistent

name server

Frank Eliassen, SRL & Ifi/UiO 58

Summary

� Implementation of RMI
� proxies, skeletons, dispatcher
� interface processing, binding, location, activation

� Invocation semantics (under partial failure)
� maybe, at-least-once, at-most-once
� Reliability of RMI is at best “at-most-once”

� Multi-threaded servers
� can in some cases be used to increase the throughput (method calls/time

unit) if, e.g., I/O is the bottleneck

� Principles of CORBA
� Clients may invoke methods of remote objects without worrying about:
object location, programming language, operating system platform,
communcation protocols or hardware.

� Principles of Java RMI
� Similar to CORBA but limited to a Java environment

30
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 59

Extra slides

Frank Eliassen, SRL & Ifi/UiO 60

CORBA

Portable object adapter (POA)

� Enables portability of object implementations across differnt ORBs

� Supports light weight transient object and persistent object
identifiers (e.g., for objects stored in databases)

� Supports transparent object activations

� Extensible mechanism for activation policies

� Several POAs in one single server

CORBA klient

POA

?

ORB

CORBA tjener

servants

31
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 61

Locating transient IORs

over IIOP

Client

IDL:MyObj bobo:1805 OA9,obj_979

Object reference (IOR)

server on bobo:1805

obj_971

obj_979

obj_983

OA9
(1) op()[OA9,obj_979]

(2)(3) reply to op()

Frank Eliassen, SRL & Ifi/UiO 62

Locating persistent IOR

over IIOP

� uses Implementation Repository (IR) as activator.

� IR:
� handles process/thread-creation and -termination, a.m.

� is not portable (specific to an ORB implementation)

� not standardized

– tailored to specific environments

– not possible to write specifications that cover all environments

– communication between an ORB and its IR is not visible to the client

� Object migration, scaling, performance, and fault tolerance are
dependent on IR

� Implemented usually as a process at a fixed address

– a set of host machines that is configured under the same IR is denoted a
“location domain”

32
INF 5040 autumn 2008

Frank Eliassen, SRL & Ifi/UiO 63

Locating persistent IOR

over IIOP

Client

IDL:MyObj MyIR:1801 Ole,obj_979

Object reference

bobo:1799

obj_971

obj_979

obj_983

Ole
(5) op()[Ole,obj_979]

(6)(7) reply to op()

IR at MyIR:1801

Ole rsh bobo “/usr/local/bin/Ole -x”

Server table

Frank /usr/local/bin/Frank

ObjAdapt Start_up command address

OA2

(1) op()[Ole,obj_979]
(2) fork/exec(rsh bobo “/usr/local/bin/Ole -x”) (3)

My_adr(bobo:1799)

(4) location_forward(bobo:1799)

bobo:1799

Frank Eliassen, SRL & Ifi/UiO 64

Java RMI development process

Define remote interface

Implement the interface

javac

rmic

Server class

Client stubImplement client

javac

Start client

Start RMI Registry

Start server objects

Register remote objects

.java

.class

.java

.class

ServerClient

uses

