
INF 5040 høst 2007 1

Frank Eliassen, SRL & Ifi/UiO 1

Software components and

distributed systems

INF 5040/9040 autumn 2008

lecturer: Frank Eliassen

Frank Eliassen, SRL & Ifi/UiO 2

Literature

� G. T. Heineman, W.T. Councill, "Component-based
Software Engneering" - Putting the Pieces Together,
Addison Wesley 2001, ch 1 and 3

– copies available at
http://heim.ifi.uio.no/~frank/inf5040/CBSE/

� TvS, chap 10.1.2 (a bit on EJB)

� Recommended

– Szyperski, C., Gruntz, D., Murer, S., ”Component Software –
Beyond Object-Oriented Programming”, Second Edition,
Addison Wesley/ACM Press, 2002

INF 5040 høst 2007 2

Frank Eliassen, SRL & Ifi/UiO 3

A history of middleware

�First generation middleware
� Exclusively based on client-server model

� Examples include Open Group’s DCE

�Second generation middleware
� Based on distributed object technology

� Examples include CORBA and Java RMI

�Third generation middleware?
� Based on (emerging) component technology

Frank Eliassen, SRL & Ifi/UiO 4

The emergence of

component technologies

�What is a component [Szyperski]?

“ a unit of composition with contractually specified

interfaces and explicit context dependencies only”

“in this context, a component can be deployed

independently and is subject to third-party

composition”

INF 5040 høst 2007 3

Frank Eliassen, SRL & Ifi/UiO 5

Software component

according to Heineman et al

� Software component: Software element that
conforms to a component model and can be
independently deployed and composed without
modification according to a composition standard

� Component model: defines specific interaction and
composition standards

� Component model implementation: dedicated set of
executable software elements required to support the
execution of components that conform to the model

� Software component infrastructure: a set of
interacting software components designed to ensure
that a a software system constructed using those
components and interfaces will satisfy clearly defined
performance specifications

Frank Eliassen, SRL & Ifi/UiO 6

Rationale for components

�Time to marked
� Improved productivity/ reduced complexity

� Focus on reuse

� Programming by assembly rather than by
engineering
� Reduced requirements to knowledge

�Most important advantage: development of
server side?
� (cf. EJB/JEE or CORBA Component Model - later)

INF 5040 høst 2007 4

Frank Eliassen, SRL & Ifi/UiO 7

Composition

�Components and composition

� Composition is the fundamental method for
construction, extension and reuse of
component-based software development

� In contrast to (implementation) inheritance
in object-oriented approaches

“Components are made for composition”

Frank Eliassen, SRL & Ifi/UiO 8

Connection-oriented

programming

� Composition of pre-manufactured components

� Binding of incoming and outgoing interfaces

� provided/required interfaces

� Reflects direction of method calls

– Not the direction of data flow

� Outgoing interface
– The method calls a component potentially may issue

� Support for distribution?

� When the binding can be made across address spaces and
computers

C1 C2

INF 5040 høst 2007 5

Frank Eliassen, SRL & Ifi/UiO 9

Third party composition

� The composition can be done by a third party external to
the components themselves (loading and binding)

� Example
� Connections (bindings), outgoing and ingoing interfaces

� Connects (binds) “matching” interfaces

� Can be done during run time by a third party
– Can typically be realized by setting an appropriate attribute of the

component with the outgoing interface (for C1, methods: setB, setV)

C1 C2

A

U

AB

B

X

V Y

Frank Eliassen, SRL & Ifi/UiO 10

Composition: Reuse and

assembly of components

Offered

interface
Required

interface

INF 5040 høst 2007 6

Frank Eliassen, SRL & Ifi/UiO 11

Background for Java og

CORBA component models

�Known problems with CORBA and Java-RMI
� How to deploy the components of my application?

� Which services will be available on a given host?

� Who activates my objects?

� Who manages the life-cycle of my objects?

=> We need a standard development, deployment and

runtime environment for distributed objects (CORBA, Java)

Frank Eliassen, SRL & Ifi/UiO 12

Explicit middleware: lack of

“separation of concerns”

� Programs directly towards a middleware API

� Application logic entangled with logic for life cycle
management, transactions, security, persistence, etc.

Client

Database
driver

Database API

Security
service

Security API

Trans.
serverTransaction API

Stub Skeleton

Distr

object

INF 5040 høst 2007 7

Frank Eliassen, SRL & Ifi/UiO 13

Implicit middleware: better support

for “separation of concerns”

� Logic for life cycle management, transactions, security, persistence,
etc. managed by the middleware

� Requirements for middleware services declared separately and can
later be changed without changing the application code

� Middleware can be changed without changing the application code

Client Database
driver

Database API

Security
service

Security API

Trans.
serverTransaction API

Stub Skeleton

Distr

object

Request

interceptor

Frank Eliassen, SRL & Ifi/UiO 14

Component platform

� A standard development, deployment and runtime

environment can be designed as a set of contractually

specified interfaces

� Contracts agreed between components and a component
platform

� Component platform defines the rules for deployment
(installation), composition and activation of components.

� For delivering and deploying a component is required a
standardized archive format that packages component
code and meta-data

INF 5040 høst 2007 8

Frank Eliassen, SRL & Ifi/UiO 15

An implementation of a component

platform is often called a container

Components

Contractually specified

interfaces

specified by component

platform

Container/Application server

Responsibilities of the container
�life cycle management

�system services

�security

�dynamic deployment and activation of new components

�e.g., resolve dependencies dynamically or activate
components requested in method calls

�when a component has a need for a service, the container
will load the component that offers the service, dynamically

Frank Eliassen, SRL & Ifi/UiO 16

Contracts

� What is in a contract?
� Set of provided interfaces.

– Some of these may be required by the component platforms

� Set of required interfaces.
– These must be offered by other components available in the container

� Pre and post conditions/invariants
� Extra-functional requirements: transactions, security, performance, ...

� Functions defined both syntactically and semantically
� int add(int a, int b)
� pre: a + b <= Integer.MAXINT
� post: result’ = a + b

� Extra-functional requirements
� Guarantees: Response within 10 ms
� Conditions: Needs 1000 CPU-cycles
� Transaction requirements: e.g, create new transaction when component is

invoked, serializable, ...

INF 5040 høst 2007 9

Frank Eliassen, SRL & Ifi/UiO 17

Summerizing the elements of a

component model

�Interfaces

�Naming

�Meta data (including dependencies)

�Interoperability

�Customization

�Composition

�Evolution support

�Packaging and deployment

Frank Eliassen, SRL & Ifi/UiO 18

Key players

�OMG and components

� CORBA v3 standard with CORBA Component
Model (CCM)

�Microsoft and components

� Development of COM/DCOM, COM+ and .NET

�SUN and components

� Development of Java Beans and EJB

INF 5040 høst 2007 10

Frank Eliassen, SRL & Ifi/UiO 19

Enterprise Java Beans (EJB)

� Component architecture for deployable server side components in Java.

� EJB 3.0: based on Metadata facility in Java 5
� annotations in source code

� Literature:e.g., EJB 3.0 in a nutshell
� http://www.javaworld.com/javaworld/jw-08-2004/jw-0809-ejb.html

� Three types of enterprise beans
� Session beans (verb)

– POJO with “session bean” annotations (meta-data)

– Transient, application logic (business rules …)

� Entity beans (noun)
– POJO with “entity bean” annotation

– Persistent, data-related logic (updates state of entities)

� Message driven beans
– Logic for receiving asynchronous messages and potentially call other beans

Frank Eliassen, SRL & Ifi/UiO 20

Client-interaction with

EJB component system

HTML Client

EJB Session Bean EJBEntity Bean
EJB Session

Bean

EJB Session BeanEJB Session Bean
EJB Message-

Driven Bean

JSPServletMessaging

Client

C++

Client

Java Apps

Java Applet

Business

Partner System

Firewall

HTTP

SOAP, WSDL, ...

CORBA-IIOP RMI-IIOP
RMI-IIOP RMI-IIOPMessaging

Presentation

Tier

Business

Tier

INF 5040 høst 2007 11

Frank Eliassen, SRL & Ifi/UiO 21

EJB 3.0 implicit middleware

� Meta data inspected by
service framework.

� Necessary ”interceptors”
weaved in

� Use of ”interceptors” to
perform system level
functions at runtime

� Persistence specified by
annotating the relevant
attributes in the source
code and mapping to
database (O/R mapping)

Frank Eliassen, SRL & Ifi/UiO 22

Connection-oriented

programing and EJB

�No support for connection-oriented
programming!!
� Follows traditional object-oriented composition
(third party can not bind EJBs, but an EJB can
specify dependencies to other components)

� A strength is automatic composition of
component-instances with appropriate services
and resources that component-instances are
dependent on
– Automatic configuration of necessary implicit middleware
servcies based on needs specified by annotations or in
the deployment-descriptor (transactions, persistence and
security)

� (JavaBeans do have support for connection-
oriented programming)

INF 5040 høst 2007 12

Frank Eliassen, SRL & Ifi/UiO 23

CORBA Component Model

(CCM)

�What is CCM?
� A language independent component model for the
server side of a multi-tiered architecture that
supports implementation, management, configuration
and deployment of CORBA applications

� Important properties
� An underlying component model
� A packaging technology for deployment of binary,
multi-lingual executable units

� A container framework that offers implicit middleware
for security, transactions, persistence and event
based communication

Frank Eliassen, SRL & Ifi/UiO 24

A CORBA component

� Support for connection-oriented programming
� Connect/disconnect operations on Receptacles
� Or based on scripting-language (part of CCM deployment descriptor)

INF 5040 høst 2007 13

Frank Eliassen, SRL & Ifi/UiO 25

Composing adaptive software

using components

� Importance and interest in adaptive software is increasing
dramatically

� mobile, ubiquitous and autonomic computing

� Components play a major part

� Compositional adaptation

� dynamic adaptation of
architecture of component-
based application
– change component impl

– redeploy component

– parameter adaptation

– change overall
architectural framework

– combinations of the above

� More later (student presentations)

Frank Eliassen, SRL & Ifi/UiO 26

Summary

�Components

� Programming according to LEGO-principle

� Contractually specified interfaces and composition

� Support for connection oriented programming

�Component architecture

� Contractually specified interfaces between
components and application servers

� Realizes ”implicit middleware”

� Java: EJB, CORBA: CCM, Microsoft: COM+/.NET

