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Literature 

� G. T. Heineman, W.T. Councill, "Component-based 
Software Engneering" - Putting the Pieces Together, 
Addison Wesley 2001, ch 1 and 3 

– copies available at 
http://heim.ifi.uio.no/~frank/inf5040/CBSE/

� TvS, chap 10.1.2 (a bit on EJB)

� Recommended

– Szyperski, C., Gruntz, D., Murer, S., ”Component Software –
Beyond Object-Oriented Programming”, Second Edition, 
Addison Wesley/ACM Press, 2002
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A history of middleware

�First generation middleware
� Exclusively based on client-server model

� Examples include Open Group’s DCE

�Second generation middleware
� Based on distributed object technology

� Examples include CORBA and Java RMI

�Third generation middleware?
� Based on (emerging) component technology
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The emergence of 

component technologies

�What is a component [Szyperski]?

“ a unit of composition with contractually specified

interfaces and explicit context dependencies only”

“in this context, a component can be deployed 

independently and is subject to third-party 

composition”
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Software component 

according to Heineman et al

� Software component: Software element that 
conforms to a component model and can be 
independently deployed and composed without 
modification according to a composition standard

� Component model: defines specific interaction and 
composition standards

� Component model implementation: dedicated set of
executable software elements required to support the
execution of components that conform to the model

� Software component infrastructure: a set of
interacting software components designed to ensure
that a a software system constructed using those
components and interfaces will satisfy clearly defined
performance specifications
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Rationale for components

�Time to marked
� Improved productivity/ reduced complexity

� Focus on reuse

� Programming by assembly rather than by 
engineering
� Reduced requirements to knowledge

�Most important advantage: development of 
server side?
� (cf. EJB/JEE or CORBA Component Model - later)
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Composition

�Components and composition

� Composition is the fundamental method for 
construction, extension and reuse of 
component-based software development

� In contrast to (implementation) inheritance 
in object-oriented approaches

“Components are made for composition”
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Connection-oriented 

programming

� Composition of pre-manufactured components

� Binding of incoming and outgoing interfaces

� provided/required interfaces

� Reflects direction of method calls

– Not the direction of data flow

� Outgoing interface
– The method calls a component potentially  may issue

� Support for distribution?

� When the binding can be made across address spaces and 
computers

C1 C2
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Third party composition

� The composition can be done by a third party external to 
the components themselves (loading and binding)

� Example
� Connections (bindings), outgoing and ingoing interfaces

� Connects (binds) “matching” interfaces

� Can be done during run time by a third party
– Can typically be realized by setting an appropriate attribute of the 

component with the outgoing interface (for C1, methods: setB, setV)

C1 C2
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V Y
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Composition: Reuse and 

assembly of components

Offered

interface
Required

interface
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Background for Java og

CORBA component models

�Known problems with CORBA and Java-RMI
� How to deploy the components of my application?

� Which services will be available on a given host?

� Who activates my objects?

� Who manages the life-cycle of my objects? 

=> We need a standard development, deployment and 

runtime environment for distributed objects (CORBA, Java) 
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Explicit middleware: lack of  

“separation of concerns”

� Programs directly towards a middleware API

� Application logic entangled with logic for life cycle 
management, transactions, security, persistence, etc. 

Client

Database
driver

Database API

Security
service

Security API

Trans.
serverTransaction API

Stub Skeleton

Distr

object
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Implicit middleware: better support 

for “separation of concerns”

� Logic for life cycle management, transactions, security, persistence, 
etc. managed by the middleware

� Requirements for middleware services declared separately and can
later be changed without changing the application code

� Middleware can be changed without changing the application code

Client Database
driver

Database API

Security
service

Security API

Trans.
serverTransaction API

Stub Skeleton

Distr

object

Request

interceptor
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Component platform

� A standard development, deployment and runtime 

environment can be designed as a set of contractually  

specified interfaces 

� Contracts agreed between components and a component 
platform

� Component platform defines the rules for deployment
(installation), composition and activation of components.

� For delivering and deploying a component is required a 
standardized archive format that packages component 
code and meta-data
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An implementation of a component 

platform is often called a container

Components

Contractually specified

interfaces

specified by component

platform

Container/Application server

Responsibilities of the container
�life cycle management

�system services

�security

�dynamic deployment and activation of new components

�e.g.,  resolve dependencies dynamically or activate
components requested in method calls

�when a component has a need for a service, the container 
will load the component that offers the service, dynamically
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Contracts

� What is in a  contract?
� Set of provided interfaces.

– Some of these may be required by the component platforms 

� Set of required interfaces.
– These must be offered by other components available in the container

� Pre and post conditions/invariants
� Extra-functional requirements: transactions, security, performance, ...

� Functions defined both syntactically and semantically
� int add(int a, int b)
� pre: a + b <= Integer.MAXINT
� post: result’ = a + b

� Extra-functional requirements
� Guarantees: Response within 10 ms
� Conditions: Needs 1000 CPU-cycles
� Transaction requirements: e.g, create new transaction when component is 

invoked, serializable, ...
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Summerizing the elements of a 

component model

�Interfaces

�Naming

�Meta data (including dependencies)

�Interoperability

�Customization

�Composition

�Evolution support

�Packaging and deployment
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Key players

�OMG and components

� CORBA v3 standard with CORBA Component 
Model (CCM)

�Microsoft and components

� Development of COM/DCOM, COM+ and .NET

�SUN and components

� Development of Java Beans and EJB
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Enterprise Java Beans (EJB)

� Component architecture for deployable server side components in Java.

� EJB 3.0: based on Metadata facility in Java 5
� annotations in source code

� Literature:e.g., EJB 3.0 in a nutshell
� http://www.javaworld.com/javaworld/jw-08-2004/jw-0809-ejb.html

� Three types of enterprise beans
� Session beans (verb)

– POJO with “session bean” annotations (meta-data)

– Transient, application logic (business rules …) 

� Entity beans (noun)
– POJO with “entity bean” annotation 

– Persistent, data-related logic (updates state of entities)

� Message driven beans
– Logic for receiving asynchronous messages and potentially call other beans
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Client-interaction with

EJB component system

HTML Client

EJB Session Bean EJBEntity Bean
EJB Session

Bean

EJB Session BeanEJB Session Bean
EJB Message-

Driven Bean

JSPServletMessaging

Client

C++

Client

Java Apps

Java Applet

Business

Partner System

Firewall

HTTP

SOAP, WSDL, ...

CORBA-IIOP RMI-IIOP
RMI-IIOP RMI-IIOPMessaging

Presentation

Tier

Business

Tier
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EJB 3.0 implicit middleware

� Meta data inspected by 
service framework.

� Necessary ”interceptors”
weaved in 

� Use of ”interceptors” to 
perform system level
functions at runtime

� Persistence specified by 
annotating the relevant 
attributes in the source
code and mapping to  
database (O/R mapping)
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Connection-oriented 

programing and EJB

�No support for connection-oriented 
programming!!
� Follows traditional object-oriented composition 
(third party can not bind EJBs, but an EJB can 
specify dependencies to other components)

� A strength is automatic composition of 
component-instances with appropriate services 
and resources that component-instances are 
dependent on
– Automatic configuration of necessary implicit middleware 
servcies based on needs specified by annotations or in 
the deployment-descriptor (transactions, persistence and 
security)

� (JavaBeans do have support for connection-
oriented programming)
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CORBA Component Model 

(CCM)

�What is CCM?
� A language independent component model for the 
server side of a multi-tiered architecture that 
supports implementation, management, configuration 
and deployment of CORBA applications

� Important properties
� An underlying component model
� A packaging  technology for deployment of binary, 
multi-lingual executable units

� A container framework that offers implicit middleware 
for security, transactions, persistence and event 
based communication
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A CORBA component

� Support for connection-oriented programming
� Connect/disconnect operations on Receptacles
� Or based on scripting-language (part of CCM deployment descriptor)
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Composing adaptive software 

using components

� Importance and interest in adaptive software is increasing
dramatically

� mobile, ubiquitous and autonomic computing

� Components play a major part

� Compositional adaptation

� dynamic adaptation of 
architecture of component-
based application
– change component impl

– redeploy component

– parameter adaptation

– change overall
architectural framework

– combinations of the above

� More later (student presentations)
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Summary

�Components

� Programming according to LEGO-principle

� Contractually specified interfaces and composition

� Support for connection oriented programming

�Component architecture

� Contractually specified interfaces between 
components and application servers

� Realizes ”implicit middleware”

� Java: EJB, CORBA: CCM, Microsoft: COM+/.NET


