
INF 5040 høst 2005 1

INF5040, Frank Eliassen & Roman Vitenberg 1

Peer-to-peer systems

INF 5040 autumn 2008

lecturer: Roman Vitenberg

INF5040, Frank Eliassen & Roman Vitenberg 2

Motivation for peer-to-peer

� Inherent restrictions of the standard
client/server model
� Centralised design lacks scalability & fault-tolerance

– Processing

– Network traffic

� P2P systems take care of distributing processing
load and network traffic between all nodes that
participate in a distributed information system
� Solve the bottelneck but must pay in the form of
considerably more complex mechanisms and lack of
control

INF 5040 høst 2005 2

INF5040, Frank Eliassen & Roman Vitenberg 3

What is P2P?

� In a P2P system, each participating node
behaves as both client and server, and “pays”
for participation by offering access to some of
its own resources

� Typically processing power and storage resources

� But it can also be a logical resource (a service)

�An application-level network on top of the
Internet (overlay network)

INF5040, Frank Eliassen & Roman Vitenberg 5

Essential characteristics of

P2P systems

� Each participant contributes its own resources
to the system

�All nodes have the same functional
capabilities and responsibility

�No dependency on a central entity for
administration of the system (self-organising)

�The effectiveness critically depends on
algorithms for data placement over many
nodes and for subsequent access to them

�Unpredictable availability of processes and
nodes

INF 5040 høst 2005 3

INF5040, Frank Eliassen & Roman Vitenberg 6

The evolution of P2P systems

and applications

� First generation
� Napster

– Sharing/exchange of music files

– Hybrid Client/Server og P2P (central index server)

� Second generation
� Gnutella, Freenet, Kazaa, ...

– Decentralised file-sharing system

� Third generation
� P2P middleware

– Application-independent middleware layer for management of
distributed resources in the global scale

– Pastry, Tapestry, CAN, Chord, ...

INF5040, Frank Eliassen & Roman Vitenberg 7

P2P middleware characterisation

� The main objectives are to
� Place resources (data objects and files) on participating nodes

that are widely spread over the Internet

� Route messages to them on behalf of the clients

� Hide the location of resources from the clients (transparency)

� Provide performance guarantees (number of hops)

� Place resources in a structured fashion to satisfy
requirements of availability, trust, load-balancing and
locality

� Resources are identified by GUIDs (derived from “secure
digest function” – see the textbook chapter 7.4.3).
� Randomised distribution of resources over nodes in different

organisations in the entire world

INF 5040 høst 2005 4

INF5040, Frank Eliassen & Roman Vitenberg 8

The difference between IP and

overlay routing for P2P applications

IP Application-level routing overlay

Scale IPv4 is limited to 232 addressable nodes. The

IPv6 name space is much more generous (2128),

but addresses in both versions are hierarchically

structured and much of the space is pre-

allocated according to administrative

requirements.

Peer-to-peer systems can address more objects.

The GUID name space is very large and flat

(>2128), allowing it to be much more fully

occupied.

Load balancing Loads on routers are determined by network

topology and associated traffic patterns.

Object locations can be randomized and hence

traffic patterns are divorced from the network

topology.

Network dynamics

(addition/deletion of

objects/nodes)

IP routing tables are updated asynchronously on

a best-efforts basis with time constants on the

order of 1 hour.

Routing tables can be updated synchronously or

asynchronously with fractions of a second

delays.

Fault tolerance Redundancy is designed into the IP network by

its managers, ensuring tolerance of a single

router or network connectivity failure. n-fold

replication is costly.

Routes and object references can be replicated

n-fold, ensuring tolerance of n failures of nodes

or connections.

Target identification Each IP address maps to exactly one target

node.

Messages can be routed to the nearest replica of

a target object.

Security and anonymity Addressing is only secure when all nodes are

trusted. Anonymity for the owners of addresses

is not achievable.

Security can be achieved even in environments

with limited trust. A limited degree of

anonymity can be provided.

INF5040, Frank Eliassen & Roman Vitenberg 9

Napster

Napster server

Index1. File location

2. List of peers

request

offering the file

peers

3. File request

4. File delivered
5. Index update

Napster server

Index

INF 5040 høst 2005 5

INF5040, Frank Eliassen & Roman Vitenberg 10

P2P middleware (1 of 2)

�Challenge: offer a mechanism that gives fast
and reliable access to resources in a location-
transparent fashion

� Functional requirements
� Facilitate construction of services that are
implemented over many nodes in a distributed
network
– Make it possible to locate and communicate with all
available resources

– Possible to add new resources and remove old ones

– Possible to add new nodes and remove old ones

– Simple application- and resource-independent API

INF5040, Frank Eliassen & Roman Vitenberg 11

P2P middleware (2 of 2)

�Non-functional requirements

� Global scalability

� Load-balancing

� Optimisation for local interaction between neighbour
peers

� Coping with high node and object “churn”

� Security of data in an environment with
heterogeneous trust

� Anonymity and resilience to censorship

INF 5040 høst 2005 6

INF5040, Frank Eliassen & Roman Vitenberg 12

Distribution of information in

a “routing overlay”

Object:

Node:

D

C’s routing knowledge

D’s routing knowledgeA’s routing knowledge

B’s routing knowledge

C

A

B

INF5040, Frank Eliassen & Roman Vitenberg 13

Routing overlay

�Application-level algorithm that locates nodes
and stored data objects (independently of
network routing)

� Possible to implement at the middleware level

� Ensures that each node can access every
object by routing requests through a sequence
of nodes and exploiting the knowledge of each
of them to locate the object

�Responsible for managing the lifecycle of
objects and nodes

INF 5040 høst 2005 7

INF5040, Frank Eliassen & Roman Vitenberg 14

Essential API for a Distributed Hash-

Table (Pastry)

put(GUID, data)

The data is stored in replicas at all nodes responsible for the

object identified by GUID.

remove(GUID)

Deletes all references to GUID and the associated data.

value = get(GUID)

The data associated with GUID is retrieved from one of the

nodes responsible it.

� Object GUID is derived from all or part of its state
using a secure digest function (e.g., SHA-1).

� GUIDs are used to place objects and to locate them
(hence called distributed hash-table)

INF5040, Frank Eliassen & Roman Vitenberg 16

Case study: Pastry

� Nodes and objects are assigned a 128-bit GUID
� By applying a secure digest function on node “public key”

and object name or (part of) its state

� In a network with N nodes, Pastry routing
algorithm delivers a message addressed to any
GUID in O(log(N)) steps
� If the GUID maps to an active node, the message is

delivered to it. Otherwise, the message is delivered to the
node with numerically closest GUID.

� Fully self-organising
� O(log(N)) messages when a participant joins, leaves, or

fails

INF 5040 høst 2005 8

INF5040, Frank Eliassen & Roman Vitenberg 17

Routing algorithm in Pastry

� Includes two mechanisms:

� Simple routing mechanism that uses information
about neighbours that provides correct routing
but may be inefficient

� More complex mechanism that efficiently routes
requests to an arbitrary node (using at most
O(log(N)) messages) but that may be
temporarily unreliable during periods of
instability

INF5040, Frank Eliassen & Roman Vitenberg 18

Routing algorithm in Pastry:

using the leaf set

� Each active node maintains an array L (“the
leaf set”) of length 2l, that includes GUID

and IP addresses of the nodes with
numerically closest GUID

� l predecessor nodes

� l successor nodes

� Pastry maintains L in presence of node
joins, leaves, and failures

INF 5040 høst 2005 9

INF5040, Frank Eliassen & Roman Vitenberg 19

Circular routing:

Correct but inefficient

The dots depict live nodes.

The space is considered

circular: node 0 is adjacent

to node (2128-1). The

diagram illustrates the

routing of a message from

node 65A1FC to D46A1C

using leaf set information

alone, assuming leaf sets

of size 8 (l = 4).

0 FFFFF....F (2 128-1)

65A1FC

D13DA3

D471F1

D467C4

D46A1C

INF5040, Frank Eliassen & Roman Vitenberg 20

Routing algorithm in Pastry:

using the routing table

� Improves the “leaf set” algorithm

� Every Pastry node maintains a tree-
structured routing table that includes GUIDs
and IP-addresses for some nodes spread
over all the address space of GUID values.

�The table is not uniform:

� Dense coverage of GUIDs that are numerically
close to the node own GUID

� Density decreases with distance from the node

INF 5040 høst 2005 10

INF5040, Frank Eliassen & Roman Vitenberg 21

Example: first four rows in a

Pastry routing table

INF5040, Frank Eliassen & Roman Vitenberg 22

Pastry routing example

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D4213F

D462BA

D471F1

D467C4

D46A1C

Routing a message from node 65A1FC to D46A1C.

With the aid of a well-populated routing table the

message can be delivered in ~ log16(N) hops.

INF 5040 høst 2005 11

INF5040, Frank Eliassen & Roman Vitenberg 24

Pastry routing algorithm

1. if L-l < D < Ll { // the destination is within the leaf set

2. Forward M to leaf set element with GUID closest to D

3. } else { // use the routing table

4. Find p, the length of the longest common prefix of D and A

and i, the (p+1)th hexadecimal digit of D

5. if (R[p,i] ≠ null) {

6. Forward M to R[p,i] // common-prefix routing

7. } else { // there is no entry in the routing table

8. Forward M to any node in R or L that is numerically closer to D

than A

9. }

10. }

When node A receives message M addressed to GUID D

(R[p,i] is the element of the routing table at row p, column i)

INF5040, Frank Eliassen & Roman Vitenberg 25

Pastry: addition of a new node

� Join protocol that constructs the routing table & “leaf set”

XX

AA

BB

ZZ

CC

Joi
n(x

) X: new node to join

A: closest neighbour

Z: GUID closest numerically to X

(routed in the usual way)

B, C, ...: nodes the join message

is routed via

A, Z, B, C, ... transmits relevants

parts of their routing tables and

leaf sets to X. X uses this info

to build its initial routing table

and leaf set.

X then transmits its routing table

and leaf set to A, Z, B, C, ...

Join(x)

Join(x)

Join(x)

Routing

info

INF 5040 høst 2005 12

INF5040, Frank Eliassen & Roman Vitenberg 26

Pastry: handling leaves and

failures

� Pastry node is considered failed when its
immediate neighbours (in the GUID space) cannot
communicate with it any longer
� All nodes send ‘heartbeat’ messages to neighbour nodes

(in their own leaf set)

� When it occurs, it is necessary to repair all leaf sets
that include GUID of the node that left or failed
� A node repairs its “leaf set” L by asking a node close to

the failed one to send its “leaf set” L’, removing the failed
node, and adding a node from L’

� Routing tables are repaired “upon discovery” (when
a routing request fails)

INF5040, Frank Eliassen & Roman Vitenberg 27

Pastry: fault-tolerance and

reliability

� Routing failure may occur
� Because of delays in spreading the info about failed nodes

� A Pastry application should retransmit routing requests in absence of
response
� In the meantime, the failure can possibly become repaired

� Randomisation of routing choice (line 6 in the routing algorithm)
� In some cases, choose a node in R[p,j] instead of R[p,i] (routing choice

that occasionally diverges from the standard algorithm)
� If some node blocks the route, a different path will be chosen sooner or

later due to retransmissions

� MSPastry: extension of Pastry with additional dependability
mechanisms
� Ack after each hop in the routing algorithm and selection of an

alternative route upon timeout
� “heartbeat”-messages
� Other miscellaneous improvements

INF 5040 høst 2005 13

INF5040, Frank Eliassen & Roman Vitenberg 28

Evaluation (MSPastry)

� Based on simulations [Castro et al 2004]
� Good performance and high reliability with thousands of nodes
� Gracefully degrading as the failure rate increases

� Reliability
� Upon 0% loss rate of IP-messages, MSPastry was not delivering 1,5 of

100.000 routing requests; none were delivered to a wrong node
� Upon 5% loss rate of IP-messages, MSPastry was not delivering 3,3 of

100.000 routing requests, and 1,5 of 100.000 were delivered to a wrong
node

� Performance
� Measured relative delay penalty: a ratio between the delay of request

delivery via MSPastry and the corresponding delay when using UDP/IP
� Relative delay penalty varies between about 1,8 (0% loss rate of IP-

messages) and about 2,2 (5% loss rate of IP-messages)

� Overhead
� Control-traffic accounts for approximately 2 messages per minute per

node in the long run (initial cost of “setup” is relatively high)

INF5040, Frank Eliassen & Roman Vitenberg 29

Example of a Pastry-based

application: Squirrel

� Web-caching system that makes use of storage and computational
resources that are already available on desktop-machines in a local
network

� GUID: applying SHA-1 on the URL gives a 128 bits Pastry-GUID.

� The node whose GUID is numerically closest to the calculated GUID
becomes the “home node” for the object

� The home node is responsible for maintaining a cached copy of the
object (acts as a proxy-server for this object)

� Client nodes use Squirrel to route GET or cGET requests to the home
node of the web object

� Evaluation shows that the performance is comparable with the
performance of a typical centralised cache (measurements including
(1) reduction in the use of extern bandwidth, (2) latency perceived by
the user, (3) storage and processing load on client nodes)

INF 5040 høst 2005 14

INF5040, Frank Eliassen & Roman Vitenberg 30

Summary

� P2P systems distribute processing load and network
traffic between all nodes that participate in the system

� P2P systems are not dependent on a central entity for
administration of the system (and self-organisation)

� The effectiveness critically depends on algorithms for
placement of data over many nodes and for subsequent
access to the data

� P2P middleware is an application-independent software
layer that implements a ”routing overlay”

� Study and evaluation of an implementation: Pastry

� A Pastry-based application: Squirrel web-cache

